123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645 |
- import numpy as np
- from numpy.core._rational_tests import rational
- from numpy.testing import (
- assert_equal, assert_array_equal, assert_raises, assert_,
- assert_raises_regex, assert_warns,
- )
- from numpy.lib.stride_tricks import (
- as_strided, broadcast_arrays, _broadcast_shape, broadcast_to,
- broadcast_shapes, sliding_window_view,
- )
- import pytest
- def assert_shapes_correct(input_shapes, expected_shape):
- # Broadcast a list of arrays with the given input shapes and check the
- # common output shape.
- inarrays = [np.zeros(s) for s in input_shapes]
- outarrays = broadcast_arrays(*inarrays)
- outshapes = [a.shape for a in outarrays]
- expected = [expected_shape] * len(inarrays)
- assert_equal(outshapes, expected)
- def assert_incompatible_shapes_raise(input_shapes):
- # Broadcast a list of arrays with the given (incompatible) input shapes
- # and check that they raise a ValueError.
- inarrays = [np.zeros(s) for s in input_shapes]
- assert_raises(ValueError, broadcast_arrays, *inarrays)
- def assert_same_as_ufunc(shape0, shape1, transposed=False, flipped=False):
- # Broadcast two shapes against each other and check that the data layout
- # is the same as if a ufunc did the broadcasting.
- x0 = np.zeros(shape0, dtype=int)
- # Note that multiply.reduce's identity element is 1.0, so when shape1==(),
- # this gives the desired n==1.
- n = int(np.multiply.reduce(shape1))
- x1 = np.arange(n).reshape(shape1)
- if transposed:
- x0 = x0.T
- x1 = x1.T
- if flipped:
- x0 = x0[::-1]
- x1 = x1[::-1]
- # Use the add ufunc to do the broadcasting. Since we're adding 0s to x1, the
- # result should be exactly the same as the broadcasted view of x1.
- y = x0 + x1
- b0, b1 = broadcast_arrays(x0, x1)
- assert_array_equal(y, b1)
- def test_same():
- x = np.arange(10)
- y = np.arange(10)
- bx, by = broadcast_arrays(x, y)
- assert_array_equal(x, bx)
- assert_array_equal(y, by)
- def test_broadcast_kwargs():
- # ensure that a TypeError is appropriately raised when
- # np.broadcast_arrays() is called with any keyword
- # argument other than 'subok'
- x = np.arange(10)
- y = np.arange(10)
- with assert_raises_regex(TypeError, 'got an unexpected keyword'):
- broadcast_arrays(x, y, dtype='float64')
- def test_one_off():
- x = np.array([[1, 2, 3]])
- y = np.array([[1], [2], [3]])
- bx, by = broadcast_arrays(x, y)
- bx0 = np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])
- by0 = bx0.T
- assert_array_equal(bx0, bx)
- assert_array_equal(by0, by)
- def test_same_input_shapes():
- # Check that the final shape is just the input shape.
- data = [
- (),
- (1,),
- (3,),
- (0, 1),
- (0, 3),
- (1, 0),
- (3, 0),
- (1, 3),
- (3, 1),
- (3, 3),
- ]
- for shape in data:
- input_shapes = [shape]
- # Single input.
- assert_shapes_correct(input_shapes, shape)
- # Double input.
- input_shapes2 = [shape, shape]
- assert_shapes_correct(input_shapes2, shape)
- # Triple input.
- input_shapes3 = [shape, shape, shape]
- assert_shapes_correct(input_shapes3, shape)
- def test_two_compatible_by_ones_input_shapes():
- # Check that two different input shapes of the same length, but some have
- # ones, broadcast to the correct shape.
- data = [
- [[(1,), (3,)], (3,)],
- [[(1, 3), (3, 3)], (3, 3)],
- [[(3, 1), (3, 3)], (3, 3)],
- [[(1, 3), (3, 1)], (3, 3)],
- [[(1, 1), (3, 3)], (3, 3)],
- [[(1, 1), (1, 3)], (1, 3)],
- [[(1, 1), (3, 1)], (3, 1)],
- [[(1, 0), (0, 0)], (0, 0)],
- [[(0, 1), (0, 0)], (0, 0)],
- [[(1, 0), (0, 1)], (0, 0)],
- [[(1, 1), (0, 0)], (0, 0)],
- [[(1, 1), (1, 0)], (1, 0)],
- [[(1, 1), (0, 1)], (0, 1)],
- ]
- for input_shapes, expected_shape in data:
- assert_shapes_correct(input_shapes, expected_shape)
- # Reverse the input shapes since broadcasting should be symmetric.
- assert_shapes_correct(input_shapes[::-1], expected_shape)
- def test_two_compatible_by_prepending_ones_input_shapes():
- # Check that two different input shapes (of different lengths) broadcast
- # to the correct shape.
- data = [
- [[(), (3,)], (3,)],
- [[(3,), (3, 3)], (3, 3)],
- [[(3,), (3, 1)], (3, 3)],
- [[(1,), (3, 3)], (3, 3)],
- [[(), (3, 3)], (3, 3)],
- [[(1, 1), (3,)], (1, 3)],
- [[(1,), (3, 1)], (3, 1)],
- [[(1,), (1, 3)], (1, 3)],
- [[(), (1, 3)], (1, 3)],
- [[(), (3, 1)], (3, 1)],
- [[(), (0,)], (0,)],
- [[(0,), (0, 0)], (0, 0)],
- [[(0,), (0, 1)], (0, 0)],
- [[(1,), (0, 0)], (0, 0)],
- [[(), (0, 0)], (0, 0)],
- [[(1, 1), (0,)], (1, 0)],
- [[(1,), (0, 1)], (0, 1)],
- [[(1,), (1, 0)], (1, 0)],
- [[(), (1, 0)], (1, 0)],
- [[(), (0, 1)], (0, 1)],
- ]
- for input_shapes, expected_shape in data:
- assert_shapes_correct(input_shapes, expected_shape)
- # Reverse the input shapes since broadcasting should be symmetric.
- assert_shapes_correct(input_shapes[::-1], expected_shape)
- def test_incompatible_shapes_raise_valueerror():
- # Check that a ValueError is raised for incompatible shapes.
- data = [
- [(3,), (4,)],
- [(2, 3), (2,)],
- [(3,), (3,), (4,)],
- [(1, 3, 4), (2, 3, 3)],
- ]
- for input_shapes in data:
- assert_incompatible_shapes_raise(input_shapes)
- # Reverse the input shapes since broadcasting should be symmetric.
- assert_incompatible_shapes_raise(input_shapes[::-1])
- def test_same_as_ufunc():
- # Check that the data layout is the same as if a ufunc did the operation.
- data = [
- [[(1,), (3,)], (3,)],
- [[(1, 3), (3, 3)], (3, 3)],
- [[(3, 1), (3, 3)], (3, 3)],
- [[(1, 3), (3, 1)], (3, 3)],
- [[(1, 1), (3, 3)], (3, 3)],
- [[(1, 1), (1, 3)], (1, 3)],
- [[(1, 1), (3, 1)], (3, 1)],
- [[(1, 0), (0, 0)], (0, 0)],
- [[(0, 1), (0, 0)], (0, 0)],
- [[(1, 0), (0, 1)], (0, 0)],
- [[(1, 1), (0, 0)], (0, 0)],
- [[(1, 1), (1, 0)], (1, 0)],
- [[(1, 1), (0, 1)], (0, 1)],
- [[(), (3,)], (3,)],
- [[(3,), (3, 3)], (3, 3)],
- [[(3,), (3, 1)], (3, 3)],
- [[(1,), (3, 3)], (3, 3)],
- [[(), (3, 3)], (3, 3)],
- [[(1, 1), (3,)], (1, 3)],
- [[(1,), (3, 1)], (3, 1)],
- [[(1,), (1, 3)], (1, 3)],
- [[(), (1, 3)], (1, 3)],
- [[(), (3, 1)], (3, 1)],
- [[(), (0,)], (0,)],
- [[(0,), (0, 0)], (0, 0)],
- [[(0,), (0, 1)], (0, 0)],
- [[(1,), (0, 0)], (0, 0)],
- [[(), (0, 0)], (0, 0)],
- [[(1, 1), (0,)], (1, 0)],
- [[(1,), (0, 1)], (0, 1)],
- [[(1,), (1, 0)], (1, 0)],
- [[(), (1, 0)], (1, 0)],
- [[(), (0, 1)], (0, 1)],
- ]
- for input_shapes, expected_shape in data:
- assert_same_as_ufunc(input_shapes[0], input_shapes[1],
- "Shapes: %s %s" % (input_shapes[0], input_shapes[1]))
- # Reverse the input shapes since broadcasting should be symmetric.
- assert_same_as_ufunc(input_shapes[1], input_shapes[0])
- # Try them transposed, too.
- assert_same_as_ufunc(input_shapes[0], input_shapes[1], True)
- # ... and flipped for non-rank-0 inputs in order to test negative
- # strides.
- if () not in input_shapes:
- assert_same_as_ufunc(input_shapes[0], input_shapes[1], False, True)
- assert_same_as_ufunc(input_shapes[0], input_shapes[1], True, True)
- def test_broadcast_to_succeeds():
- data = [
- [np.array(0), (0,), np.array(0)],
- [np.array(0), (1,), np.zeros(1)],
- [np.array(0), (3,), np.zeros(3)],
- [np.ones(1), (1,), np.ones(1)],
- [np.ones(1), (2,), np.ones(2)],
- [np.ones(1), (1, 2, 3), np.ones((1, 2, 3))],
- [np.arange(3), (3,), np.arange(3)],
- [np.arange(3), (1, 3), np.arange(3).reshape(1, -1)],
- [np.arange(3), (2, 3), np.array([[0, 1, 2], [0, 1, 2]])],
- # test if shape is not a tuple
- [np.ones(0), 0, np.ones(0)],
- [np.ones(1), 1, np.ones(1)],
- [np.ones(1), 2, np.ones(2)],
- # these cases with size 0 are strange, but they reproduce the behavior
- # of broadcasting with ufuncs (see test_same_as_ufunc above)
- [np.ones(1), (0,), np.ones(0)],
- [np.ones((1, 2)), (0, 2), np.ones((0, 2))],
- [np.ones((2, 1)), (2, 0), np.ones((2, 0))],
- ]
- for input_array, shape, expected in data:
- actual = broadcast_to(input_array, shape)
- assert_array_equal(expected, actual)
- def test_broadcast_to_raises():
- data = [
- [(0,), ()],
- [(1,), ()],
- [(3,), ()],
- [(3,), (1,)],
- [(3,), (2,)],
- [(3,), (4,)],
- [(1, 2), (2, 1)],
- [(1, 1), (1,)],
- [(1,), -1],
- [(1,), (-1,)],
- [(1, 2), (-1, 2)],
- ]
- for orig_shape, target_shape in data:
- arr = np.zeros(orig_shape)
- assert_raises(ValueError, lambda: broadcast_to(arr, target_shape))
- def test_broadcast_shape():
- # tests internal _broadcast_shape
- # _broadcast_shape is already exercised indirectly by broadcast_arrays
- # _broadcast_shape is also exercised by the public broadcast_shapes function
- assert_equal(_broadcast_shape(), ())
- assert_equal(_broadcast_shape([1, 2]), (2,))
- assert_equal(_broadcast_shape(np.ones((1, 1))), (1, 1))
- assert_equal(_broadcast_shape(np.ones((1, 1)), np.ones((3, 4))), (3, 4))
- assert_equal(_broadcast_shape(*([np.ones((1, 2))] * 32)), (1, 2))
- assert_equal(_broadcast_shape(*([np.ones((1, 2))] * 100)), (1, 2))
- # regression tests for gh-5862
- assert_equal(_broadcast_shape(*([np.ones(2)] * 32 + [1])), (2,))
- bad_args = [np.ones(2)] * 32 + [np.ones(3)] * 32
- assert_raises(ValueError, lambda: _broadcast_shape(*bad_args))
- def test_broadcast_shapes_succeeds():
- # tests public broadcast_shapes
- data = [
- [[], ()],
- [[()], ()],
- [[(7,)], (7,)],
- [[(1, 2), (2,)], (1, 2)],
- [[(1, 1)], (1, 1)],
- [[(1, 1), (3, 4)], (3, 4)],
- [[(6, 7), (5, 6, 1), (7,), (5, 1, 7)], (5, 6, 7)],
- [[(5, 6, 1)], (5, 6, 1)],
- [[(1, 3), (3, 1)], (3, 3)],
- [[(1, 0), (0, 0)], (0, 0)],
- [[(0, 1), (0, 0)], (0, 0)],
- [[(1, 0), (0, 1)], (0, 0)],
- [[(1, 1), (0, 0)], (0, 0)],
- [[(1, 1), (1, 0)], (1, 0)],
- [[(1, 1), (0, 1)], (0, 1)],
- [[(), (0,)], (0,)],
- [[(0,), (0, 0)], (0, 0)],
- [[(0,), (0, 1)], (0, 0)],
- [[(1,), (0, 0)], (0, 0)],
- [[(), (0, 0)], (0, 0)],
- [[(1, 1), (0,)], (1, 0)],
- [[(1,), (0, 1)], (0, 1)],
- [[(1,), (1, 0)], (1, 0)],
- [[(), (1, 0)], (1, 0)],
- [[(), (0, 1)], (0, 1)],
- [[(1,), (3,)], (3,)],
- [[2, (3, 2)], (3, 2)],
- ]
- for input_shapes, target_shape in data:
- assert_equal(broadcast_shapes(*input_shapes), target_shape)
- assert_equal(broadcast_shapes(*([(1, 2)] * 32)), (1, 2))
- assert_equal(broadcast_shapes(*([(1, 2)] * 100)), (1, 2))
- # regression tests for gh-5862
- assert_equal(broadcast_shapes(*([(2,)] * 32)), (2,))
- def test_broadcast_shapes_raises():
- # tests public broadcast_shapes
- data = [
- [(3,), (4,)],
- [(2, 3), (2,)],
- [(3,), (3,), (4,)],
- [(1, 3, 4), (2, 3, 3)],
- [(1, 2), (3,1), (3,2), (10, 5)],
- [2, (2, 3)],
- ]
- for input_shapes in data:
- assert_raises(ValueError, lambda: broadcast_shapes(*input_shapes))
- bad_args = [(2,)] * 32 + [(3,)] * 32
- assert_raises(ValueError, lambda: broadcast_shapes(*bad_args))
- def test_as_strided():
- a = np.array([None])
- a_view = as_strided(a)
- expected = np.array([None])
- assert_array_equal(a_view, np.array([None]))
- a = np.array([1, 2, 3, 4])
- a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,))
- expected = np.array([1, 3])
- assert_array_equal(a_view, expected)
- a = np.array([1, 2, 3, 4])
- a_view = as_strided(a, shape=(3, 4), strides=(0, 1 * a.itemsize))
- expected = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]])
- assert_array_equal(a_view, expected)
- # Regression test for gh-5081
- dt = np.dtype([('num', 'i4'), ('obj', 'O')])
- a = np.empty((4,), dtype=dt)
- a['num'] = np.arange(1, 5)
- a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
- expected_num = [[1, 2, 3, 4]] * 3
- expected_obj = [[None]*4]*3
- assert_equal(a_view.dtype, dt)
- assert_array_equal(expected_num, a_view['num'])
- assert_array_equal(expected_obj, a_view['obj'])
- # Make sure that void types without fields are kept unchanged
- a = np.empty((4,), dtype='V4')
- a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
- assert_equal(a.dtype, a_view.dtype)
- # Make sure that the only type that could fail is properly handled
- dt = np.dtype({'names': [''], 'formats': ['V4']})
- a = np.empty((4,), dtype=dt)
- a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
- assert_equal(a.dtype, a_view.dtype)
- # Custom dtypes should not be lost (gh-9161)
- r = [rational(i) for i in range(4)]
- a = np.array(r, dtype=rational)
- a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
- assert_equal(a.dtype, a_view.dtype)
- assert_array_equal([r] * 3, a_view)
- class TestSlidingWindowView:
- def test_1d(self):
- arr = np.arange(5)
- arr_view = sliding_window_view(arr, 2)
- expected = np.array([[0, 1],
- [1, 2],
- [2, 3],
- [3, 4]])
- assert_array_equal(arr_view, expected)
- def test_2d(self):
- i, j = np.ogrid[:3, :4]
- arr = 10*i + j
- shape = (2, 2)
- arr_view = sliding_window_view(arr, shape)
- expected = np.array([[[[0, 1], [10, 11]],
- [[1, 2], [11, 12]],
- [[2, 3], [12, 13]]],
- [[[10, 11], [20, 21]],
- [[11, 12], [21, 22]],
- [[12, 13], [22, 23]]]])
- assert_array_equal(arr_view, expected)
- def test_2d_with_axis(self):
- i, j = np.ogrid[:3, :4]
- arr = 10*i + j
- arr_view = sliding_window_view(arr, 3, 0)
- expected = np.array([[[0, 10, 20],
- [1, 11, 21],
- [2, 12, 22],
- [3, 13, 23]]])
- assert_array_equal(arr_view, expected)
- def test_2d_repeated_axis(self):
- i, j = np.ogrid[:3, :4]
- arr = 10*i + j
- arr_view = sliding_window_view(arr, (2, 3), (1, 1))
- expected = np.array([[[[0, 1, 2],
- [1, 2, 3]]],
- [[[10, 11, 12],
- [11, 12, 13]]],
- [[[20, 21, 22],
- [21, 22, 23]]]])
- assert_array_equal(arr_view, expected)
- def test_2d_without_axis(self):
- i, j = np.ogrid[:4, :4]
- arr = 10*i + j
- shape = (2, 3)
- arr_view = sliding_window_view(arr, shape)
- expected = np.array([[[[0, 1, 2], [10, 11, 12]],
- [[1, 2, 3], [11, 12, 13]]],
- [[[10, 11, 12], [20, 21, 22]],
- [[11, 12, 13], [21, 22, 23]]],
- [[[20, 21, 22], [30, 31, 32]],
- [[21, 22, 23], [31, 32, 33]]]])
- assert_array_equal(arr_view, expected)
- def test_errors(self):
- i, j = np.ogrid[:4, :4]
- arr = 10*i + j
- with pytest.raises(ValueError, match='cannot contain negative values'):
- sliding_window_view(arr, (-1, 3))
- with pytest.raises(
- ValueError,
- match='must provide window_shape for all dimensions of `x`'):
- sliding_window_view(arr, (1,))
- with pytest.raises(
- ValueError,
- match='Must provide matching length window_shape and axis'):
- sliding_window_view(arr, (1, 3, 4), axis=(0, 1))
- with pytest.raises(
- ValueError,
- match='window shape cannot be larger than input array'):
- sliding_window_view(arr, (5, 5))
- def test_writeable(self):
- arr = np.arange(5)
- view = sliding_window_view(arr, 2, writeable=False)
- assert_(not view.flags.writeable)
- with pytest.raises(
- ValueError,
- match='assignment destination is read-only'):
- view[0, 0] = 3
- view = sliding_window_view(arr, 2, writeable=True)
- assert_(view.flags.writeable)
- view[0, 1] = 3
- assert_array_equal(arr, np.array([0, 3, 2, 3, 4]))
- def test_subok(self):
- class MyArray(np.ndarray):
- pass
- arr = np.arange(5).view(MyArray)
- assert_(not isinstance(sliding_window_view(arr, 2,
- subok=False),
- MyArray))
- assert_(isinstance(sliding_window_view(arr, 2, subok=True), MyArray))
- # Default behavior
- assert_(not isinstance(sliding_window_view(arr, 2), MyArray))
- def as_strided_writeable():
- arr = np.ones(10)
- view = as_strided(arr, writeable=False)
- assert_(not view.flags.writeable)
- # Check that writeable also is fine:
- view = as_strided(arr, writeable=True)
- assert_(view.flags.writeable)
- view[...] = 3
- assert_array_equal(arr, np.full_like(arr, 3))
- # Test that things do not break down for readonly:
- arr.flags.writeable = False
- view = as_strided(arr, writeable=False)
- view = as_strided(arr, writeable=True)
- assert_(not view.flags.writeable)
- class VerySimpleSubClass(np.ndarray):
- def __new__(cls, *args, **kwargs):
- return np.array(*args, subok=True, **kwargs).view(cls)
- class SimpleSubClass(VerySimpleSubClass):
- def __new__(cls, *args, **kwargs):
- self = np.array(*args, subok=True, **kwargs).view(cls)
- self.info = 'simple'
- return self
- def __array_finalize__(self, obj):
- self.info = getattr(obj, 'info', '') + ' finalized'
- def test_subclasses():
- # test that subclass is preserved only if subok=True
- a = VerySimpleSubClass([1, 2, 3, 4])
- assert_(type(a) is VerySimpleSubClass)
- a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,))
- assert_(type(a_view) is np.ndarray)
- a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,), subok=True)
- assert_(type(a_view) is VerySimpleSubClass)
- # test that if a subclass has __array_finalize__, it is used
- a = SimpleSubClass([1, 2, 3, 4])
- a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,), subok=True)
- assert_(type(a_view) is SimpleSubClass)
- assert_(a_view.info == 'simple finalized')
- # similar tests for broadcast_arrays
- b = np.arange(len(a)).reshape(-1, 1)
- a_view, b_view = broadcast_arrays(a, b)
- assert_(type(a_view) is np.ndarray)
- assert_(type(b_view) is np.ndarray)
- assert_(a_view.shape == b_view.shape)
- a_view, b_view = broadcast_arrays(a, b, subok=True)
- assert_(type(a_view) is SimpleSubClass)
- assert_(a_view.info == 'simple finalized')
- assert_(type(b_view) is np.ndarray)
- assert_(a_view.shape == b_view.shape)
- # and for broadcast_to
- shape = (2, 4)
- a_view = broadcast_to(a, shape)
- assert_(type(a_view) is np.ndarray)
- assert_(a_view.shape == shape)
- a_view = broadcast_to(a, shape, subok=True)
- assert_(type(a_view) is SimpleSubClass)
- assert_(a_view.info == 'simple finalized')
- assert_(a_view.shape == shape)
- def test_writeable():
- # broadcast_to should return a readonly array
- original = np.array([1, 2, 3])
- result = broadcast_to(original, (2, 3))
- assert_equal(result.flags.writeable, False)
- assert_raises(ValueError, result.__setitem__, slice(None), 0)
- # but the result of broadcast_arrays needs to be writeable, to
- # preserve backwards compatibility
- for is_broadcast, results in [(False, broadcast_arrays(original,)),
- (True, broadcast_arrays(0, original))]:
- for result in results:
- # This will change to False in a future version
- if is_broadcast:
- with assert_warns(FutureWarning):
- assert_equal(result.flags.writeable, True)
- with assert_warns(DeprecationWarning):
- result[:] = 0
- # Warning not emitted, writing to the array resets it
- assert_equal(result.flags.writeable, True)
- else:
- # No warning:
- assert_equal(result.flags.writeable, True)
- for results in [broadcast_arrays(original),
- broadcast_arrays(0, original)]:
- for result in results:
- # resets the warn_on_write DeprecationWarning
- result.flags.writeable = True
- # check: no warning emitted
- assert_equal(result.flags.writeable, True)
- result[:] = 0
- # keep readonly input readonly
- original.flags.writeable = False
- _, result = broadcast_arrays(0, original)
- assert_equal(result.flags.writeable, False)
- # regression test for GH6491
- shape = (2,)
- strides = [0]
- tricky_array = as_strided(np.array(0), shape, strides)
- other = np.zeros((1,))
- first, second = broadcast_arrays(tricky_array, other)
- assert_(first.shape == second.shape)
- def test_writeable_memoryview():
- # The result of broadcast_arrays exports as a non-writeable memoryview
- # because otherwise there is no good way to opt in to the new behaviour
- # (i.e. you would need to set writeable to False explicitly).
- # See gh-13929.
- original = np.array([1, 2, 3])
- for is_broadcast, results in [(False, broadcast_arrays(original,)),
- (True, broadcast_arrays(0, original))]:
- for result in results:
- # This will change to False in a future version
- if is_broadcast:
- # memoryview(result, writable=True) will give warning but cannot
- # be tested using the python API.
- assert memoryview(result).readonly
- else:
- assert not memoryview(result).readonly
- def test_reference_types():
- input_array = np.array('a', dtype=object)
- expected = np.array(['a'] * 3, dtype=object)
- actual = broadcast_to(input_array, (3,))
- assert_array_equal(expected, actual)
- actual, _ = broadcast_arrays(input_array, np.ones(3))
- assert_array_equal(expected, actual)
|