1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363 |
- """Tests for the array padding functions.
- """
- import pytest
- import numpy as np
- from numpy.testing import assert_array_equal, assert_allclose, assert_equal
- from numpy.lib.arraypad import _as_pairs
- _numeric_dtypes = (
- np.sctypes["uint"]
- + np.sctypes["int"]
- + np.sctypes["float"]
- + np.sctypes["complex"]
- )
- _all_modes = {
- 'constant': {'constant_values': 0},
- 'edge': {},
- 'linear_ramp': {'end_values': 0},
- 'maximum': {'stat_length': None},
- 'mean': {'stat_length': None},
- 'median': {'stat_length': None},
- 'minimum': {'stat_length': None},
- 'reflect': {'reflect_type': 'even'},
- 'symmetric': {'reflect_type': 'even'},
- 'wrap': {},
- 'empty': {}
- }
- class TestAsPairs:
- def test_single_value(self):
- """Test casting for a single value."""
- expected = np.array([[3, 3]] * 10)
- for x in (3, [3], [[3]]):
- result = _as_pairs(x, 10)
- assert_equal(result, expected)
- # Test with dtype=object
- obj = object()
- assert_equal(
- _as_pairs(obj, 10),
- np.array([[obj, obj]] * 10)
- )
- def test_two_values(self):
- """Test proper casting for two different values."""
- # Broadcasting in the first dimension with numbers
- expected = np.array([[3, 4]] * 10)
- for x in ([3, 4], [[3, 4]]):
- result = _as_pairs(x, 10)
- assert_equal(result, expected)
- # and with dtype=object
- obj = object()
- assert_equal(
- _as_pairs(["a", obj], 10),
- np.array([["a", obj]] * 10)
- )
- # Broadcasting in the second / last dimension with numbers
- assert_equal(
- _as_pairs([[3], [4]], 2),
- np.array([[3, 3], [4, 4]])
- )
- # and with dtype=object
- assert_equal(
- _as_pairs([["a"], [obj]], 2),
- np.array([["a", "a"], [obj, obj]])
- )
- def test_with_none(self):
- expected = ((None, None), (None, None), (None, None))
- assert_equal(
- _as_pairs(None, 3, as_index=False),
- expected
- )
- assert_equal(
- _as_pairs(None, 3, as_index=True),
- expected
- )
- def test_pass_through(self):
- """Test if `x` already matching desired output are passed through."""
- expected = np.arange(12).reshape((6, 2))
- assert_equal(
- _as_pairs(expected, 6),
- expected
- )
- def test_as_index(self):
- """Test results if `as_index=True`."""
- assert_equal(
- _as_pairs([2.6, 3.3], 10, as_index=True),
- np.array([[3, 3]] * 10, dtype=np.intp)
- )
- assert_equal(
- _as_pairs([2.6, 4.49], 10, as_index=True),
- np.array([[3, 4]] * 10, dtype=np.intp)
- )
- for x in (-3, [-3], [[-3]], [-3, 4], [3, -4], [[-3, 4]], [[4, -3]],
- [[1, 2]] * 9 + [[1, -2]]):
- with pytest.raises(ValueError, match="negative values"):
- _as_pairs(x, 10, as_index=True)
- def test_exceptions(self):
- """Ensure faulty usage is discovered."""
- with pytest.raises(ValueError, match="more dimensions than allowed"):
- _as_pairs([[[3]]], 10)
- with pytest.raises(ValueError, match="could not be broadcast"):
- _as_pairs([[1, 2], [3, 4]], 3)
- with pytest.raises(ValueError, match="could not be broadcast"):
- _as_pairs(np.ones((2, 3)), 3)
- class TestConditionalShortcuts:
- @pytest.mark.parametrize("mode", _all_modes.keys())
- def test_zero_padding_shortcuts(self, mode):
- test = np.arange(120).reshape(4, 5, 6)
- pad_amt = [(0, 0) for _ in test.shape]
- assert_array_equal(test, np.pad(test, pad_amt, mode=mode))
- @pytest.mark.parametrize("mode", ['maximum', 'mean', 'median', 'minimum',])
- def test_shallow_statistic_range(self, mode):
- test = np.arange(120).reshape(4, 5, 6)
- pad_amt = [(1, 1) for _ in test.shape]
- assert_array_equal(np.pad(test, pad_amt, mode='edge'),
- np.pad(test, pad_amt, mode=mode, stat_length=1))
- @pytest.mark.parametrize("mode", ['maximum', 'mean', 'median', 'minimum',])
- def test_clip_statistic_range(self, mode):
- test = np.arange(30).reshape(5, 6)
- pad_amt = [(3, 3) for _ in test.shape]
- assert_array_equal(np.pad(test, pad_amt, mode=mode),
- np.pad(test, pad_amt, mode=mode, stat_length=30))
- class TestStatistic:
- def test_check_mean_stat_length(self):
- a = np.arange(100).astype('f')
- a = np.pad(a, ((25, 20), ), 'mean', stat_length=((2, 3), ))
- b = np.array(
- [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
- 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
- 0.5, 0.5, 0.5, 0.5, 0.5,
- 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,
- 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
- 20., 21., 22., 23., 24., 25., 26., 27., 28., 29.,
- 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.,
- 40., 41., 42., 43., 44., 45., 46., 47., 48., 49.,
- 50., 51., 52., 53., 54., 55., 56., 57., 58., 59.,
- 60., 61., 62., 63., 64., 65., 66., 67., 68., 69.,
- 70., 71., 72., 73., 74., 75., 76., 77., 78., 79.,
- 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.,
- 90., 91., 92., 93., 94., 95., 96., 97., 98., 99.,
- 98., 98., 98., 98., 98., 98., 98., 98., 98., 98.,
- 98., 98., 98., 98., 98., 98., 98., 98., 98., 98.
- ])
- assert_array_equal(a, b)
- def test_check_maximum_1(self):
- a = np.arange(100)
- a = np.pad(a, (25, 20), 'maximum')
- b = np.array(
- [99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99,
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
- 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
- 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
- 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
- 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
- 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
- 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
- 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]
- )
- assert_array_equal(a, b)
- def test_check_maximum_2(self):
- a = np.arange(100) + 1
- a = np.pad(a, (25, 20), 'maximum')
- b = np.array(
- [100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
- 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
- 100, 100, 100, 100, 100,
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
- 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
- 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
- 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
- 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
- 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
- 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
- 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
- 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
- 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
- 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
- 100, 100, 100, 100, 100, 100, 100, 100, 100, 100]
- )
- assert_array_equal(a, b)
- def test_check_maximum_stat_length(self):
- a = np.arange(100) + 1
- a = np.pad(a, (25, 20), 'maximum', stat_length=10)
- b = np.array(
- [10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
- 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
- 10, 10, 10, 10, 10,
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
- 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
- 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
- 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
- 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
- 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
- 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
- 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
- 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
- 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
- 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
- 100, 100, 100, 100, 100, 100, 100, 100, 100, 100]
- )
- assert_array_equal(a, b)
- def test_check_minimum_1(self):
- a = np.arange(100)
- a = np.pad(a, (25, 20), 'minimum')
- b = np.array(
- [0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0,
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
- 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
- 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
- 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
- 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
- 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
- 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- )
- assert_array_equal(a, b)
- def test_check_minimum_2(self):
- a = np.arange(100) + 2
- a = np.pad(a, (25, 20), 'minimum')
- b = np.array(
- [2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2,
- 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
- 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
- 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
- 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
- 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
- 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
- 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
- 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
- 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
- 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
- )
- assert_array_equal(a, b)
- def test_check_minimum_stat_length(self):
- a = np.arange(100) + 1
- a = np.pad(a, (25, 20), 'minimum', stat_length=10)
- b = np.array(
- [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1,
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
- 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
- 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
- 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
- 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
- 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
- 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
- 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
- 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
- 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
- 91, 91, 91, 91, 91, 91, 91, 91, 91, 91,
- 91, 91, 91, 91, 91, 91, 91, 91, 91, 91]
- )
- assert_array_equal(a, b)
- def test_check_median(self):
- a = np.arange(100).astype('f')
- a = np.pad(a, (25, 20), 'median')
- b = np.array(
- [49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
- 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
- 49.5, 49.5, 49.5, 49.5, 49.5,
- 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,
- 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
- 20., 21., 22., 23., 24., 25., 26., 27., 28., 29.,
- 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.,
- 40., 41., 42., 43., 44., 45., 46., 47., 48., 49.,
- 50., 51., 52., 53., 54., 55., 56., 57., 58., 59.,
- 60., 61., 62., 63., 64., 65., 66., 67., 68., 69.,
- 70., 71., 72., 73., 74., 75., 76., 77., 78., 79.,
- 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.,
- 90., 91., 92., 93., 94., 95., 96., 97., 98., 99.,
- 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
- 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5]
- )
- assert_array_equal(a, b)
- def test_check_median_01(self):
- a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]])
- a = np.pad(a, 1, 'median')
- b = np.array(
- [[4, 4, 5, 4, 4],
- [3, 3, 1, 4, 3],
- [5, 4, 5, 9, 5],
- [8, 9, 8, 2, 8],
- [4, 4, 5, 4, 4]]
- )
- assert_array_equal(a, b)
- def test_check_median_02(self):
- a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]])
- a = np.pad(a.T, 1, 'median').T
- b = np.array(
- [[5, 4, 5, 4, 5],
- [3, 3, 1, 4, 3],
- [5, 4, 5, 9, 5],
- [8, 9, 8, 2, 8],
- [5, 4, 5, 4, 5]]
- )
- assert_array_equal(a, b)
- def test_check_median_stat_length(self):
- a = np.arange(100).astype('f')
- a[1] = 2.
- a[97] = 96.
- a = np.pad(a, (25, 20), 'median', stat_length=(3, 5))
- b = np.array(
- [ 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
- 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
- 2., 2., 2., 2., 2.,
- 0., 2., 2., 3., 4., 5., 6., 7., 8., 9.,
- 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
- 20., 21., 22., 23., 24., 25., 26., 27., 28., 29.,
- 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.,
- 40., 41., 42., 43., 44., 45., 46., 47., 48., 49.,
- 50., 51., 52., 53., 54., 55., 56., 57., 58., 59.,
- 60., 61., 62., 63., 64., 65., 66., 67., 68., 69.,
- 70., 71., 72., 73., 74., 75., 76., 77., 78., 79.,
- 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.,
- 90., 91., 92., 93., 94., 95., 96., 96., 98., 99.,
- 96., 96., 96., 96., 96., 96., 96., 96., 96., 96.,
- 96., 96., 96., 96., 96., 96., 96., 96., 96., 96.]
- )
- assert_array_equal(a, b)
- def test_check_mean_shape_one(self):
- a = [[4, 5, 6]]
- a = np.pad(a, (5, 7), 'mean', stat_length=2)
- b = np.array(
- [[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
- [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6]]
- )
- assert_array_equal(a, b)
- def test_check_mean_2(self):
- a = np.arange(100).astype('f')
- a = np.pad(a, (25, 20), 'mean')
- b = np.array(
- [49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
- 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
- 49.5, 49.5, 49.5, 49.5, 49.5,
- 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,
- 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
- 20., 21., 22., 23., 24., 25., 26., 27., 28., 29.,
- 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.,
- 40., 41., 42., 43., 44., 45., 46., 47., 48., 49.,
- 50., 51., 52., 53., 54., 55., 56., 57., 58., 59.,
- 60., 61., 62., 63., 64., 65., 66., 67., 68., 69.,
- 70., 71., 72., 73., 74., 75., 76., 77., 78., 79.,
- 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.,
- 90., 91., 92., 93., 94., 95., 96., 97., 98., 99.,
- 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
- 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5]
- )
- assert_array_equal(a, b)
- @pytest.mark.parametrize("mode", [
- "mean",
- "median",
- "minimum",
- "maximum"
- ])
- def test_same_prepend_append(self, mode):
- """ Test that appended and prepended values are equal """
- # This test is constructed to trigger floating point rounding errors in
- # a way that caused gh-11216 for mode=='mean'
- a = np.array([-1, 2, -1]) + np.array([0, 1e-12, 0], dtype=np.float64)
- a = np.pad(a, (1, 1), mode)
- assert_equal(a[0], a[-1])
- @pytest.mark.parametrize("mode", ["mean", "median", "minimum", "maximum"])
- @pytest.mark.parametrize(
- "stat_length", [-2, (-2,), (3, -1), ((5, 2), (-2, 3)), ((-4,), (2,))]
- )
- def test_check_negative_stat_length(self, mode, stat_length):
- arr = np.arange(30).reshape((6, 5))
- match = "index can't contain negative values"
- with pytest.raises(ValueError, match=match):
- np.pad(arr, 2, mode, stat_length=stat_length)
- def test_simple_stat_length(self):
- a = np.arange(30)
- a = np.reshape(a, (6, 5))
- a = np.pad(a, ((2, 3), (3, 2)), mode='mean', stat_length=(3,))
- b = np.array(
- [[6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
- [6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
- [1, 1, 1, 0, 1, 2, 3, 4, 3, 3],
- [6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
- [11, 11, 11, 10, 11, 12, 13, 14, 13, 13],
- [16, 16, 16, 15, 16, 17, 18, 19, 18, 18],
- [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
- [26, 26, 26, 25, 26, 27, 28, 29, 28, 28],
- [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
- [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
- [21, 21, 21, 20, 21, 22, 23, 24, 23, 23]]
- )
- assert_array_equal(a, b)
- @pytest.mark.filterwarnings("ignore:Mean of empty slice:RuntimeWarning")
- @pytest.mark.filterwarnings(
- "ignore:invalid value encountered in( scalar)? divide:RuntimeWarning"
- )
- @pytest.mark.parametrize("mode", ["mean", "median"])
- def test_zero_stat_length_valid(self, mode):
- arr = np.pad([1., 2.], (1, 2), mode, stat_length=0)
- expected = np.array([np.nan, 1., 2., np.nan, np.nan])
- assert_equal(arr, expected)
- @pytest.mark.parametrize("mode", ["minimum", "maximum"])
- def test_zero_stat_length_invalid(self, mode):
- match = "stat_length of 0 yields no value for padding"
- with pytest.raises(ValueError, match=match):
- np.pad([1., 2.], 0, mode, stat_length=0)
- with pytest.raises(ValueError, match=match):
- np.pad([1., 2.], 0, mode, stat_length=(1, 0))
- with pytest.raises(ValueError, match=match):
- np.pad([1., 2.], 1, mode, stat_length=0)
- with pytest.raises(ValueError, match=match):
- np.pad([1., 2.], 1, mode, stat_length=(1, 0))
- class TestConstant:
- def test_check_constant(self):
- a = np.arange(100)
- a = np.pad(a, (25, 20), 'constant', constant_values=(10, 20))
- b = np.array(
- [10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
- 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
- 10, 10, 10, 10, 10,
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
- 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
- 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
- 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
- 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
- 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
- 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
- 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
- 20, 20, 20, 20, 20, 20, 20, 20, 20, 20]
- )
- assert_array_equal(a, b)
- def test_check_constant_zeros(self):
- a = np.arange(100)
- a = np.pad(a, (25, 20), 'constant')
- b = np.array(
- [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0,
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
- 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
- 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
- 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
- 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
- 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
- 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- )
- assert_array_equal(a, b)
- def test_check_constant_float(self):
- # If input array is int, but constant_values are float, the dtype of
- # the array to be padded is kept
- arr = np.arange(30).reshape(5, 6)
- test = np.pad(arr, (1, 2), mode='constant',
- constant_values=1.1)
- expected = np.array(
- [[ 1, 1, 1, 1, 1, 1, 1, 1, 1],
- [ 1, 0, 1, 2, 3, 4, 5, 1, 1],
- [ 1, 6, 7, 8, 9, 10, 11, 1, 1],
- [ 1, 12, 13, 14, 15, 16, 17, 1, 1],
- [ 1, 18, 19, 20, 21, 22, 23, 1, 1],
- [ 1, 24, 25, 26, 27, 28, 29, 1, 1],
- [ 1, 1, 1, 1, 1, 1, 1, 1, 1],
- [ 1, 1, 1, 1, 1, 1, 1, 1, 1]]
- )
- assert_allclose(test, expected)
- def test_check_constant_float2(self):
- # If input array is float, and constant_values are float, the dtype of
- # the array to be padded is kept - here retaining the float constants
- arr = np.arange(30).reshape(5, 6)
- arr_float = arr.astype(np.float64)
- test = np.pad(arr_float, ((1, 2), (1, 2)), mode='constant',
- constant_values=1.1)
- expected = np.array(
- [[ 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1],
- [ 1.1, 0. , 1. , 2. , 3. , 4. , 5. , 1.1, 1.1],
- [ 1.1, 6. , 7. , 8. , 9. , 10. , 11. , 1.1, 1.1],
- [ 1.1, 12. , 13. , 14. , 15. , 16. , 17. , 1.1, 1.1],
- [ 1.1, 18. , 19. , 20. , 21. , 22. , 23. , 1.1, 1.1],
- [ 1.1, 24. , 25. , 26. , 27. , 28. , 29. , 1.1, 1.1],
- [ 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1],
- [ 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1]]
- )
- assert_allclose(test, expected)
- def test_check_constant_float3(self):
- a = np.arange(100, dtype=float)
- a = np.pad(a, (25, 20), 'constant', constant_values=(-1.1, -1.2))
- b = np.array(
- [-1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1,
- -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1,
- -1.1, -1.1, -1.1, -1.1, -1.1,
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
- 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
- 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
- 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
- 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
- 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
- 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
- -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2,
- -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2]
- )
- assert_allclose(a, b)
- def test_check_constant_odd_pad_amount(self):
- arr = np.arange(30).reshape(5, 6)
- test = np.pad(arr, ((1,), (2,)), mode='constant',
- constant_values=3)
- expected = np.array(
- [[ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3],
- [ 3, 3, 0, 1, 2, 3, 4, 5, 3, 3],
- [ 3, 3, 6, 7, 8, 9, 10, 11, 3, 3],
- [ 3, 3, 12, 13, 14, 15, 16, 17, 3, 3],
- [ 3, 3, 18, 19, 20, 21, 22, 23, 3, 3],
- [ 3, 3, 24, 25, 26, 27, 28, 29, 3, 3],
- [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]]
- )
- assert_allclose(test, expected)
- def test_check_constant_pad_2d(self):
- arr = np.arange(4).reshape(2, 2)
- test = np.lib.pad(arr, ((1, 2), (1, 3)), mode='constant',
- constant_values=((1, 2), (3, 4)))
- expected = np.array(
- [[3, 1, 1, 4, 4, 4],
- [3, 0, 1, 4, 4, 4],
- [3, 2, 3, 4, 4, 4],
- [3, 2, 2, 4, 4, 4],
- [3, 2, 2, 4, 4, 4]]
- )
- assert_allclose(test, expected)
- def test_check_large_integers(self):
- uint64_max = 2 ** 64 - 1
- arr = np.full(5, uint64_max, dtype=np.uint64)
- test = np.pad(arr, 1, mode="constant", constant_values=arr.min())
- expected = np.full(7, uint64_max, dtype=np.uint64)
- assert_array_equal(test, expected)
- int64_max = 2 ** 63 - 1
- arr = np.full(5, int64_max, dtype=np.int64)
- test = np.pad(arr, 1, mode="constant", constant_values=arr.min())
- expected = np.full(7, int64_max, dtype=np.int64)
- assert_array_equal(test, expected)
- def test_check_object_array(self):
- arr = np.empty(1, dtype=object)
- obj_a = object()
- arr[0] = obj_a
- obj_b = object()
- obj_c = object()
- arr = np.pad(arr, pad_width=1, mode='constant',
- constant_values=(obj_b, obj_c))
- expected = np.empty((3,), dtype=object)
- expected[0] = obj_b
- expected[1] = obj_a
- expected[2] = obj_c
- assert_array_equal(arr, expected)
- def test_pad_empty_dimension(self):
- arr = np.zeros((3, 0, 2))
- result = np.pad(arr, [(0,), (2,), (1,)], mode="constant")
- assert result.shape == (3, 4, 4)
- class TestLinearRamp:
- def test_check_simple(self):
- a = np.arange(100).astype('f')
- a = np.pad(a, (25, 20), 'linear_ramp', end_values=(4, 5))
- b = np.array(
- [4.00, 3.84, 3.68, 3.52, 3.36, 3.20, 3.04, 2.88, 2.72, 2.56,
- 2.40, 2.24, 2.08, 1.92, 1.76, 1.60, 1.44, 1.28, 1.12, 0.96,
- 0.80, 0.64, 0.48, 0.32, 0.16,
- 0.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00,
- 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0,
- 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0,
- 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0,
- 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0,
- 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0,
- 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0,
- 70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 76.0, 77.0, 78.0, 79.0,
- 80.0, 81.0, 82.0, 83.0, 84.0, 85.0, 86.0, 87.0, 88.0, 89.0,
- 90.0, 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, 99.0,
- 94.3, 89.6, 84.9, 80.2, 75.5, 70.8, 66.1, 61.4, 56.7, 52.0,
- 47.3, 42.6, 37.9, 33.2, 28.5, 23.8, 19.1, 14.4, 9.7, 5.]
- )
- assert_allclose(a, b, rtol=1e-5, atol=1e-5)
- def test_check_2d(self):
- arr = np.arange(20).reshape(4, 5).astype(np.float64)
- test = np.pad(arr, (2, 2), mode='linear_ramp', end_values=(0, 0))
- expected = np.array(
- [[0., 0., 0., 0., 0., 0., 0., 0., 0.],
- [0., 0., 0., 0.5, 1., 1.5, 2., 1., 0.],
- [0., 0., 0., 1., 2., 3., 4., 2., 0.],
- [0., 2.5, 5., 6., 7., 8., 9., 4.5, 0.],
- [0., 5., 10., 11., 12., 13., 14., 7., 0.],
- [0., 7.5, 15., 16., 17., 18., 19., 9.5, 0.],
- [0., 3.75, 7.5, 8., 8.5, 9., 9.5, 4.75, 0.],
- [0., 0., 0., 0., 0., 0., 0., 0., 0.]])
- assert_allclose(test, expected)
- @pytest.mark.xfail(exceptions=(AssertionError,))
- def test_object_array(self):
- from fractions import Fraction
- arr = np.array([Fraction(1, 2), Fraction(-1, 2)])
- actual = np.pad(arr, (2, 3), mode='linear_ramp', end_values=0)
- # deliberately chosen to have a non-power-of-2 denominator such that
- # rounding to floats causes a failure.
- expected = np.array([
- Fraction( 0, 12),
- Fraction( 3, 12),
- Fraction( 6, 12),
- Fraction(-6, 12),
- Fraction(-4, 12),
- Fraction(-2, 12),
- Fraction(-0, 12),
- ])
- assert_equal(actual, expected)
- def test_end_values(self):
- """Ensure that end values are exact."""
- a = np.pad(np.ones(10).reshape(2, 5), (223, 123), mode="linear_ramp")
- assert_equal(a[:, 0], 0.)
- assert_equal(a[:, -1], 0.)
- assert_equal(a[0, :], 0.)
- assert_equal(a[-1, :], 0.)
- @pytest.mark.parametrize("dtype", _numeric_dtypes)
- def test_negative_difference(self, dtype):
- """
- Check correct behavior of unsigned dtypes if there is a negative
- difference between the edge to pad and `end_values`. Check both cases
- to be independent of implementation. Test behavior for all other dtypes
- in case dtype casting interferes with complex dtypes. See gh-14191.
- """
- x = np.array([3], dtype=dtype)
- result = np.pad(x, 3, mode="linear_ramp", end_values=0)
- expected = np.array([0, 1, 2, 3, 2, 1, 0], dtype=dtype)
- assert_equal(result, expected)
- x = np.array([0], dtype=dtype)
- result = np.pad(x, 3, mode="linear_ramp", end_values=3)
- expected = np.array([3, 2, 1, 0, 1, 2, 3], dtype=dtype)
- assert_equal(result, expected)
- class TestReflect:
- def test_check_simple(self):
- a = np.arange(100)
- a = np.pad(a, (25, 20), 'reflect')
- b = np.array(
- [25, 24, 23, 22, 21, 20, 19, 18, 17, 16,
- 15, 14, 13, 12, 11, 10, 9, 8, 7, 6,
- 5, 4, 3, 2, 1,
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
- 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
- 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
- 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
- 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
- 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
- 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
- 98, 97, 96, 95, 94, 93, 92, 91, 90, 89,
- 88, 87, 86, 85, 84, 83, 82, 81, 80, 79]
- )
- assert_array_equal(a, b)
- def test_check_odd_method(self):
- a = np.arange(100)
- a = np.pad(a, (25, 20), 'reflect', reflect_type='odd')
- b = np.array(
- [-25, -24, -23, -22, -21, -20, -19, -18, -17, -16,
- -15, -14, -13, -12, -11, -10, -9, -8, -7, -6,
- -5, -4, -3, -2, -1,
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
- 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
- 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
- 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
- 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
- 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
- 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
- 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,
- 110, 111, 112, 113, 114, 115, 116, 117, 118, 119]
- )
- assert_array_equal(a, b)
- def test_check_large_pad(self):
- a = [[4, 5, 6], [6, 7, 8]]
- a = np.pad(a, (5, 7), 'reflect')
- b = np.array(
- [[7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5]]
- )
- assert_array_equal(a, b)
- def test_check_shape(self):
- a = [[4, 5, 6]]
- a = np.pad(a, (5, 7), 'reflect')
- b = np.array(
- [[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
- [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5]]
- )
- assert_array_equal(a, b)
- def test_check_01(self):
- a = np.pad([1, 2, 3], 2, 'reflect')
- b = np.array([3, 2, 1, 2, 3, 2, 1])
- assert_array_equal(a, b)
- def test_check_02(self):
- a = np.pad([1, 2, 3], 3, 'reflect')
- b = np.array([2, 3, 2, 1, 2, 3, 2, 1, 2])
- assert_array_equal(a, b)
- def test_check_03(self):
- a = np.pad([1, 2, 3], 4, 'reflect')
- b = np.array([1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3])
- assert_array_equal(a, b)
- class TestEmptyArray:
- """Check how padding behaves on arrays with an empty dimension."""
- @pytest.mark.parametrize(
- # Keep parametrization ordered, otherwise pytest-xdist might believe
- # that different tests were collected during parallelization
- "mode", sorted(_all_modes.keys() - {"constant", "empty"})
- )
- def test_pad_empty_dimension(self, mode):
- match = ("can't extend empty axis 0 using modes other than 'constant' "
- "or 'empty'")
- with pytest.raises(ValueError, match=match):
- np.pad([], 4, mode=mode)
- with pytest.raises(ValueError, match=match):
- np.pad(np.ndarray(0), 4, mode=mode)
- with pytest.raises(ValueError, match=match):
- np.pad(np.zeros((0, 3)), ((1,), (0,)), mode=mode)
- @pytest.mark.parametrize("mode", _all_modes.keys())
- def test_pad_non_empty_dimension(self, mode):
- result = np.pad(np.ones((2, 0, 2)), ((3,), (0,), (1,)), mode=mode)
- assert result.shape == (8, 0, 4)
- class TestSymmetric:
- def test_check_simple(self):
- a = np.arange(100)
- a = np.pad(a, (25, 20), 'symmetric')
- b = np.array(
- [24, 23, 22, 21, 20, 19, 18, 17, 16, 15,
- 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
- 4, 3, 2, 1, 0,
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
- 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
- 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
- 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
- 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
- 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
- 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
- 99, 98, 97, 96, 95, 94, 93, 92, 91, 90,
- 89, 88, 87, 86, 85, 84, 83, 82, 81, 80]
- )
- assert_array_equal(a, b)
- def test_check_odd_method(self):
- a = np.arange(100)
- a = np.pad(a, (25, 20), 'symmetric', reflect_type='odd')
- b = np.array(
- [-24, -23, -22, -21, -20, -19, -18, -17, -16, -15,
- -14, -13, -12, -11, -10, -9, -8, -7, -6, -5,
- -4, -3, -2, -1, 0,
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
- 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
- 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
- 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
- 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
- 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
- 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
- 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
- 109, 110, 111, 112, 113, 114, 115, 116, 117, 118]
- )
- assert_array_equal(a, b)
- def test_check_large_pad(self):
- a = [[4, 5, 6], [6, 7, 8]]
- a = np.pad(a, (5, 7), 'symmetric')
- b = np.array(
- [[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8],
- [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8],
- [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8],
- [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6]]
- )
- assert_array_equal(a, b)
- def test_check_large_pad_odd(self):
- a = [[4, 5, 6], [6, 7, 8]]
- a = np.pad(a, (5, 7), 'symmetric', reflect_type='odd')
- b = np.array(
- [[-3, -2, -2, -1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6],
- [-3, -2, -2, -1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6],
- [-1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8],
- [-1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8],
- [ 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10],
- [ 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10],
- [ 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12],
- [ 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12],
- [ 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14],
- [ 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14],
- [ 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16],
- [ 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16],
- [ 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18],
- [ 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18]]
- )
- assert_array_equal(a, b)
- def test_check_shape(self):
- a = [[4, 5, 6]]
- a = np.pad(a, (5, 7), 'symmetric')
- b = np.array(
- [[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
- [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6]]
- )
- assert_array_equal(a, b)
- def test_check_01(self):
- a = np.pad([1, 2, 3], 2, 'symmetric')
- b = np.array([2, 1, 1, 2, 3, 3, 2])
- assert_array_equal(a, b)
- def test_check_02(self):
- a = np.pad([1, 2, 3], 3, 'symmetric')
- b = np.array([3, 2, 1, 1, 2, 3, 3, 2, 1])
- assert_array_equal(a, b)
- def test_check_03(self):
- a = np.pad([1, 2, 3], 6, 'symmetric')
- b = np.array([1, 2, 3, 3, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3])
- assert_array_equal(a, b)
- class TestWrap:
- def test_check_simple(self):
- a = np.arange(100)
- a = np.pad(a, (25, 20), 'wrap')
- b = np.array(
- [75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
- 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
- 95, 96, 97, 98, 99,
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
- 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
- 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
- 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
- 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
- 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
- 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
- )
- assert_array_equal(a, b)
- def test_check_large_pad(self):
- a = np.arange(12)
- a = np.reshape(a, (3, 4))
- a = np.pad(a, (10, 12), 'wrap')
- b = np.array(
- [[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
- 11, 8, 9, 10, 11, 8, 9, 10, 11],
- [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
- 3, 0, 1, 2, 3, 0, 1, 2, 3],
- [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
- 7, 4, 5, 6, 7, 4, 5, 6, 7],
- [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
- 11, 8, 9, 10, 11, 8, 9, 10, 11],
- [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
- 3, 0, 1, 2, 3, 0, 1, 2, 3],
- [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
- 7, 4, 5, 6, 7, 4, 5, 6, 7],
- [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
- 11, 8, 9, 10, 11, 8, 9, 10, 11],
- [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
- 3, 0, 1, 2, 3, 0, 1, 2, 3],
- [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
- 7, 4, 5, 6, 7, 4, 5, 6, 7],
- [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
- 11, 8, 9, 10, 11, 8, 9, 10, 11],
- [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
- 3, 0, 1, 2, 3, 0, 1, 2, 3],
- [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
- 7, 4, 5, 6, 7, 4, 5, 6, 7],
- [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
- 11, 8, 9, 10, 11, 8, 9, 10, 11],
- [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
- 3, 0, 1, 2, 3, 0, 1, 2, 3],
- [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
- 7, 4, 5, 6, 7, 4, 5, 6, 7],
- [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
- 11, 8, 9, 10, 11, 8, 9, 10, 11],
- [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
- 3, 0, 1, 2, 3, 0, 1, 2, 3],
- [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
- 7, 4, 5, 6, 7, 4, 5, 6, 7],
- [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
- 11, 8, 9, 10, 11, 8, 9, 10, 11],
- [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
- 3, 0, 1, 2, 3, 0, 1, 2, 3],
- [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
- 7, 4, 5, 6, 7, 4, 5, 6, 7],
- [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
- 11, 8, 9, 10, 11, 8, 9, 10, 11],
- [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
- 3, 0, 1, 2, 3, 0, 1, 2, 3],
- [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
- 7, 4, 5, 6, 7, 4, 5, 6, 7],
- [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
- 11, 8, 9, 10, 11, 8, 9, 10, 11]]
- )
- assert_array_equal(a, b)
- def test_check_01(self):
- a = np.pad([1, 2, 3], 3, 'wrap')
- b = np.array([1, 2, 3, 1, 2, 3, 1, 2, 3])
- assert_array_equal(a, b)
- def test_check_02(self):
- a = np.pad([1, 2, 3], 4, 'wrap')
- b = np.array([3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1])
- assert_array_equal(a, b)
- def test_pad_with_zero(self):
- a = np.ones((3, 5))
- b = np.pad(a, (0, 5), mode="wrap")
- assert_array_equal(a, b[:-5, :-5])
- def test_repeated_wrapping(self):
- """
- Check wrapping on each side individually if the wrapped area is longer
- than the original array.
- """
- a = np.arange(5)
- b = np.pad(a, (12, 0), mode="wrap")
- assert_array_equal(np.r_[a, a, a, a][3:], b)
- a = np.arange(5)
- b = np.pad(a, (0, 12), mode="wrap")
- assert_array_equal(np.r_[a, a, a, a][:-3], b)
- class TestEdge:
- def test_check_simple(self):
- a = np.arange(12)
- a = np.reshape(a, (4, 3))
- a = np.pad(a, ((2, 3), (3, 2)), 'edge')
- b = np.array(
- [[0, 0, 0, 0, 1, 2, 2, 2],
- [0, 0, 0, 0, 1, 2, 2, 2],
- [0, 0, 0, 0, 1, 2, 2, 2],
- [3, 3, 3, 3, 4, 5, 5, 5],
- [6, 6, 6, 6, 7, 8, 8, 8],
- [9, 9, 9, 9, 10, 11, 11, 11],
- [9, 9, 9, 9, 10, 11, 11, 11],
- [9, 9, 9, 9, 10, 11, 11, 11],
- [9, 9, 9, 9, 10, 11, 11, 11]]
- )
- assert_array_equal(a, b)
- def test_check_width_shape_1_2(self):
- # Check a pad_width of the form ((1, 2),).
- # Regression test for issue gh-7808.
- a = np.array([1, 2, 3])
- padded = np.pad(a, ((1, 2),), 'edge')
- expected = np.array([1, 1, 2, 3, 3, 3])
- assert_array_equal(padded, expected)
- a = np.array([[1, 2, 3], [4, 5, 6]])
- padded = np.pad(a, ((1, 2),), 'edge')
- expected = np.pad(a, ((1, 2), (1, 2)), 'edge')
- assert_array_equal(padded, expected)
- a = np.arange(24).reshape(2, 3, 4)
- padded = np.pad(a, ((1, 2),), 'edge')
- expected = np.pad(a, ((1, 2), (1, 2), (1, 2)), 'edge')
- assert_array_equal(padded, expected)
- class TestEmpty:
- def test_simple(self):
- arr = np.arange(24).reshape(4, 6)
- result = np.pad(arr, [(2, 3), (3, 1)], mode="empty")
- assert result.shape == (9, 10)
- assert_equal(arr, result[2:-3, 3:-1])
- def test_pad_empty_dimension(self):
- arr = np.zeros((3, 0, 2))
- result = np.pad(arr, [(0,), (2,), (1,)], mode="empty")
- assert result.shape == (3, 4, 4)
- def test_legacy_vector_functionality():
- def _padwithtens(vector, pad_width, iaxis, kwargs):
- vector[:pad_width[0]] = 10
- vector[-pad_width[1]:] = 10
- a = np.arange(6).reshape(2, 3)
- a = np.pad(a, 2, _padwithtens)
- b = np.array(
- [[10, 10, 10, 10, 10, 10, 10],
- [10, 10, 10, 10, 10, 10, 10],
- [10, 10, 0, 1, 2, 10, 10],
- [10, 10, 3, 4, 5, 10, 10],
- [10, 10, 10, 10, 10, 10, 10],
- [10, 10, 10, 10, 10, 10, 10]]
- )
- assert_array_equal(a, b)
- def test_unicode_mode():
- a = np.pad([1], 2, mode='constant')
- b = np.array([0, 0, 1, 0, 0])
- assert_array_equal(a, b)
- @pytest.mark.parametrize("mode", ["edge", "symmetric", "reflect", "wrap"])
- def test_object_input(mode):
- # Regression test for issue gh-11395.
- a = np.full((4, 3), fill_value=None)
- pad_amt = ((2, 3), (3, 2))
- b = np.full((9, 8), fill_value=None)
- assert_array_equal(np.pad(a, pad_amt, mode=mode), b)
- class TestPadWidth:
- @pytest.mark.parametrize("pad_width", [
- (4, 5, 6, 7),
- ((1,), (2,), (3,)),
- ((1, 2), (3, 4), (5, 6)),
- ((3, 4, 5), (0, 1, 2)),
- ])
- @pytest.mark.parametrize("mode", _all_modes.keys())
- def test_misshaped_pad_width(self, pad_width, mode):
- arr = np.arange(30).reshape((6, 5))
- match = "operands could not be broadcast together"
- with pytest.raises(ValueError, match=match):
- np.pad(arr, pad_width, mode)
- @pytest.mark.parametrize("mode", _all_modes.keys())
- def test_misshaped_pad_width_2(self, mode):
- arr = np.arange(30).reshape((6, 5))
- match = ("input operand has more dimensions than allowed by the axis "
- "remapping")
- with pytest.raises(ValueError, match=match):
- np.pad(arr, (((3,), (4,), (5,)), ((0,), (1,), (2,))), mode)
- @pytest.mark.parametrize(
- "pad_width", [-2, (-2,), (3, -1), ((5, 2), (-2, 3)), ((-4,), (2,))])
- @pytest.mark.parametrize("mode", _all_modes.keys())
- def test_negative_pad_width(self, pad_width, mode):
- arr = np.arange(30).reshape((6, 5))
- match = "index can't contain negative values"
- with pytest.raises(ValueError, match=match):
- np.pad(arr, pad_width, mode)
- @pytest.mark.parametrize("pad_width, dtype", [
- ("3", None),
- ("word", None),
- (None, None),
- (object(), None),
- (3.4, None),
- (((2, 3, 4), (3, 2)), object),
- (complex(1, -1), None),
- (((-2.1, 3), (3, 2)), None),
- ])
- @pytest.mark.parametrize("mode", _all_modes.keys())
- def test_bad_type(self, pad_width, dtype, mode):
- arr = np.arange(30).reshape((6, 5))
- match = "`pad_width` must be of integral type."
- if dtype is not None:
- # avoid DeprecationWarning when not specifying dtype
- with pytest.raises(TypeError, match=match):
- np.pad(arr, np.array(pad_width, dtype=dtype), mode)
- else:
- with pytest.raises(TypeError, match=match):
- np.pad(arr, pad_width, mode)
- with pytest.raises(TypeError, match=match):
- np.pad(arr, np.array(pad_width), mode)
- def test_pad_width_as_ndarray(self):
- a = np.arange(12)
- a = np.reshape(a, (4, 3))
- a = np.pad(a, np.array(((2, 3), (3, 2))), 'edge')
- b = np.array(
- [[0, 0, 0, 0, 1, 2, 2, 2],
- [0, 0, 0, 0, 1, 2, 2, 2],
- [0, 0, 0, 0, 1, 2, 2, 2],
- [3, 3, 3, 3, 4, 5, 5, 5],
- [6, 6, 6, 6, 7, 8, 8, 8],
- [9, 9, 9, 9, 10, 11, 11, 11],
- [9, 9, 9, 9, 10, 11, 11, 11],
- [9, 9, 9, 9, 10, 11, 11, 11],
- [9, 9, 9, 9, 10, 11, 11, 11]]
- )
- assert_array_equal(a, b)
- @pytest.mark.parametrize("pad_width", [0, (0, 0), ((0, 0), (0, 0))])
- @pytest.mark.parametrize("mode", _all_modes.keys())
- def test_zero_pad_width(self, pad_width, mode):
- arr = np.arange(30).reshape(6, 5)
- assert_array_equal(arr, np.pad(arr, pad_width, mode=mode))
- @pytest.mark.parametrize("mode", _all_modes.keys())
- def test_kwargs(mode):
- """Test behavior of pad's kwargs for the given mode."""
- allowed = _all_modes[mode]
- not_allowed = {}
- for kwargs in _all_modes.values():
- if kwargs != allowed:
- not_allowed.update(kwargs)
- # Test if allowed keyword arguments pass
- np.pad([1, 2, 3], 1, mode, **allowed)
- # Test if prohibited keyword arguments of other modes raise an error
- for key, value in not_allowed.items():
- match = "unsupported keyword arguments for mode '{}'".format(mode)
- with pytest.raises(ValueError, match=match):
- np.pad([1, 2, 3], 1, mode, **{key: value})
- def test_constant_zero_default():
- arr = np.array([1, 1])
- assert_array_equal(np.pad(arr, 2), [0, 0, 1, 1, 0, 0])
- @pytest.mark.parametrize("mode", [1, "const", object(), None, True, False])
- def test_unsupported_mode(mode):
- match= "mode '{}' is not supported".format(mode)
- with pytest.raises(ValueError, match=match):
- np.pad([1, 2, 3], 4, mode=mode)
- @pytest.mark.parametrize("mode", _all_modes.keys())
- def test_non_contiguous_array(mode):
- arr = np.arange(24).reshape(4, 6)[::2, ::2]
- result = np.pad(arr, (2, 3), mode)
- assert result.shape == (7, 8)
- assert_equal(result[2:-3, 2:-3], arr)
- @pytest.mark.parametrize("mode", _all_modes.keys())
- def test_memory_layout_persistence(mode):
- """Test if C and F order is preserved for all pad modes."""
- x = np.ones((5, 10), order='C')
- assert np.pad(x, 5, mode).flags["C_CONTIGUOUS"]
- x = np.ones((5, 10), order='F')
- assert np.pad(x, 5, mode).flags["F_CONTIGUOUS"]
- @pytest.mark.parametrize("dtype", _numeric_dtypes)
- @pytest.mark.parametrize("mode", _all_modes.keys())
- def test_dtype_persistence(dtype, mode):
- arr = np.zeros((3, 2, 1), dtype=dtype)
- result = np.pad(arr, 1, mode=mode)
- assert result.dtype == dtype
|