123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494 |
- import pytest
- from numpy.f2py.symbolic import (
- Expr,
- Op,
- ArithOp,
- Language,
- as_symbol,
- as_number,
- as_string,
- as_array,
- as_complex,
- as_terms,
- as_factors,
- eliminate_quotes,
- insert_quotes,
- fromstring,
- as_expr,
- as_apply,
- as_numer_denom,
- as_ternary,
- as_ref,
- as_deref,
- normalize,
- as_eq,
- as_ne,
- as_lt,
- as_gt,
- as_le,
- as_ge,
- )
- from . import util
- class TestSymbolic(util.F2PyTest):
- def test_eliminate_quotes(self):
- def worker(s):
- r, d = eliminate_quotes(s)
- s1 = insert_quotes(r, d)
- assert s1 == s
- for kind in ["", "mykind_"]:
- worker(kind + '"1234" // "ABCD"')
- worker(kind + '"1234" // ' + kind + '"ABCD"')
- worker(kind + "\"1234\" // 'ABCD'")
- worker(kind + '"1234" // ' + kind + "'ABCD'")
- worker(kind + '"1\\"2\'AB\'34"')
- worker("a = " + kind + "'1\\'2\"AB\"34'")
- def test_sanity(self):
- x = as_symbol("x")
- y = as_symbol("y")
- z = as_symbol("z")
- assert x.op == Op.SYMBOL
- assert repr(x) == "Expr(Op.SYMBOL, 'x')"
- assert x == x
- assert x != y
- assert hash(x) is not None
- n = as_number(123)
- m = as_number(456)
- assert n.op == Op.INTEGER
- assert repr(n) == "Expr(Op.INTEGER, (123, 4))"
- assert n == n
- assert n != m
- assert hash(n) is not None
- fn = as_number(12.3)
- fm = as_number(45.6)
- assert fn.op == Op.REAL
- assert repr(fn) == "Expr(Op.REAL, (12.3, 4))"
- assert fn == fn
- assert fn != fm
- assert hash(fn) is not None
- c = as_complex(1, 2)
- c2 = as_complex(3, 4)
- assert c.op == Op.COMPLEX
- assert repr(c) == ("Expr(Op.COMPLEX, (Expr(Op.INTEGER, (1, 4)),"
- " Expr(Op.INTEGER, (2, 4))))")
- assert c == c
- assert c != c2
- assert hash(c) is not None
- s = as_string("'123'")
- s2 = as_string('"ABC"')
- assert s.op == Op.STRING
- assert repr(s) == "Expr(Op.STRING, (\"'123'\", 1))", repr(s)
- assert s == s
- assert s != s2
- a = as_array((n, m))
- b = as_array((n, ))
- assert a.op == Op.ARRAY
- assert repr(a) == ("Expr(Op.ARRAY, (Expr(Op.INTEGER, (123, 4)),"
- " Expr(Op.INTEGER, (456, 4))))")
- assert a == a
- assert a != b
- t = as_terms(x)
- u = as_terms(y)
- assert t.op == Op.TERMS
- assert repr(t) == "Expr(Op.TERMS, {Expr(Op.SYMBOL, 'x'): 1})"
- assert t == t
- assert t != u
- assert hash(t) is not None
- v = as_factors(x)
- w = as_factors(y)
- assert v.op == Op.FACTORS
- assert repr(v) == "Expr(Op.FACTORS, {Expr(Op.SYMBOL, 'x'): 1})"
- assert v == v
- assert w != v
- assert hash(v) is not None
- t = as_ternary(x, y, z)
- u = as_ternary(x, z, y)
- assert t.op == Op.TERNARY
- assert t == t
- assert t != u
- assert hash(t) is not None
- e = as_eq(x, y)
- f = as_lt(x, y)
- assert e.op == Op.RELATIONAL
- assert e == e
- assert e != f
- assert hash(e) is not None
- def test_tostring_fortran(self):
- x = as_symbol("x")
- y = as_symbol("y")
- z = as_symbol("z")
- n = as_number(123)
- m = as_number(456)
- a = as_array((n, m))
- c = as_complex(n, m)
- assert str(x) == "x"
- assert str(n) == "123"
- assert str(a) == "[123, 456]"
- assert str(c) == "(123, 456)"
- assert str(Expr(Op.TERMS, {x: 1})) == "x"
- assert str(Expr(Op.TERMS, {x: 2})) == "2 * x"
- assert str(Expr(Op.TERMS, {x: -1})) == "-x"
- assert str(Expr(Op.TERMS, {x: -2})) == "-2 * x"
- assert str(Expr(Op.TERMS, {x: 1, y: 1})) == "x + y"
- assert str(Expr(Op.TERMS, {x: -1, y: -1})) == "-x - y"
- assert str(Expr(Op.TERMS, {x: 2, y: 3})) == "2 * x + 3 * y"
- assert str(Expr(Op.TERMS, {x: -2, y: 3})) == "-2 * x + 3 * y"
- assert str(Expr(Op.TERMS, {x: 2, y: -3})) == "2 * x - 3 * y"
- assert str(Expr(Op.FACTORS, {x: 1})) == "x"
- assert str(Expr(Op.FACTORS, {x: 2})) == "x ** 2"
- assert str(Expr(Op.FACTORS, {x: -1})) == "x ** -1"
- assert str(Expr(Op.FACTORS, {x: -2})) == "x ** -2"
- assert str(Expr(Op.FACTORS, {x: 1, y: 1})) == "x * y"
- assert str(Expr(Op.FACTORS, {x: 2, y: 3})) == "x ** 2 * y ** 3"
- v = Expr(Op.FACTORS, {x: 2, Expr(Op.TERMS, {x: 1, y: 1}): 3})
- assert str(v) == "x ** 2 * (x + y) ** 3", str(v)
- v = Expr(Op.FACTORS, {x: 2, Expr(Op.FACTORS, {x: 1, y: 1}): 3})
- assert str(v) == "x ** 2 * (x * y) ** 3", str(v)
- assert str(Expr(Op.APPLY, ("f", (), {}))) == "f()"
- assert str(Expr(Op.APPLY, ("f", (x, ), {}))) == "f(x)"
- assert str(Expr(Op.APPLY, ("f", (x, y), {}))) == "f(x, y)"
- assert str(Expr(Op.INDEXING, ("f", x))) == "f[x]"
- assert str(as_ternary(x, y, z)) == "merge(y, z, x)"
- assert str(as_eq(x, y)) == "x .eq. y"
- assert str(as_ne(x, y)) == "x .ne. y"
- assert str(as_lt(x, y)) == "x .lt. y"
- assert str(as_le(x, y)) == "x .le. y"
- assert str(as_gt(x, y)) == "x .gt. y"
- assert str(as_ge(x, y)) == "x .ge. y"
- def test_tostring_c(self):
- language = Language.C
- x = as_symbol("x")
- y = as_symbol("y")
- z = as_symbol("z")
- n = as_number(123)
- assert Expr(Op.FACTORS, {x: 2}).tostring(language=language) == "x * x"
- assert (Expr(Op.FACTORS, {
- x + y: 2
- }).tostring(language=language) == "(x + y) * (x + y)")
- assert Expr(Op.FACTORS, {
- x: 12
- }).tostring(language=language) == "pow(x, 12)"
- assert as_apply(ArithOp.DIV, x,
- y).tostring(language=language) == "x / y"
- assert (as_apply(ArithOp.DIV, x,
- x + y).tostring(language=language) == "x / (x + y)")
- assert (as_apply(ArithOp.DIV, x - y, x +
- y).tostring(language=language) == "(x - y) / (x + y)")
- assert (x + (x - y) / (x + y) +
- n).tostring(language=language) == "123 + x + (x - y) / (x + y)"
- assert as_ternary(x, y, z).tostring(language=language) == "(x?y:z)"
- assert as_eq(x, y).tostring(language=language) == "x == y"
- assert as_ne(x, y).tostring(language=language) == "x != y"
- assert as_lt(x, y).tostring(language=language) == "x < y"
- assert as_le(x, y).tostring(language=language) == "x <= y"
- assert as_gt(x, y).tostring(language=language) == "x > y"
- assert as_ge(x, y).tostring(language=language) == "x >= y"
- def test_operations(self):
- x = as_symbol("x")
- y = as_symbol("y")
- z = as_symbol("z")
- assert x + x == Expr(Op.TERMS, {x: 2})
- assert x - x == Expr(Op.INTEGER, (0, 4))
- assert x + y == Expr(Op.TERMS, {x: 1, y: 1})
- assert x - y == Expr(Op.TERMS, {x: 1, y: -1})
- assert x * x == Expr(Op.FACTORS, {x: 2})
- assert x * y == Expr(Op.FACTORS, {x: 1, y: 1})
- assert +x == x
- assert -x == Expr(Op.TERMS, {x: -1}), repr(-x)
- assert 2 * x == Expr(Op.TERMS, {x: 2})
- assert 2 + x == Expr(Op.TERMS, {x: 1, as_number(1): 2})
- assert 2 * x + 3 * y == Expr(Op.TERMS, {x: 2, y: 3})
- assert (x + y) * 2 == Expr(Op.TERMS, {x: 2, y: 2})
- assert x**2 == Expr(Op.FACTORS, {x: 2})
- assert (x + y)**2 == Expr(
- Op.TERMS,
- {
- Expr(Op.FACTORS, {x: 2}): 1,
- Expr(Op.FACTORS, {y: 2}): 1,
- Expr(Op.FACTORS, {
- x: 1,
- y: 1
- }): 2,
- },
- )
- assert (x + y) * x == x**2 + x * y
- assert (x + y)**2 == x**2 + 2 * x * y + y**2
- assert (x + y)**2 + (x - y)**2 == 2 * x**2 + 2 * y**2
- assert (x + y) * z == x * z + y * z
- assert z * (x + y) == x * z + y * z
- assert (x / 2) == as_apply(ArithOp.DIV, x, as_number(2))
- assert (2 * x / 2) == x
- assert (3 * x / 2) == as_apply(ArithOp.DIV, 3 * x, as_number(2))
- assert (4 * x / 2) == 2 * x
- assert (5 * x / 2) == as_apply(ArithOp.DIV, 5 * x, as_number(2))
- assert (6 * x / 2) == 3 * x
- assert ((3 * 5) * x / 6) == as_apply(ArithOp.DIV, 5 * x, as_number(2))
- assert (30 * x**2 * y**4 / (24 * x**3 * y**3)) == as_apply(
- ArithOp.DIV, 5 * y, 4 * x)
- assert ((15 * x / 6) / 5) == as_apply(ArithOp.DIV, x,
- as_number(2)), (15 * x / 6) / 5
- assert (x / (5 / x)) == as_apply(ArithOp.DIV, x**2, as_number(5))
- assert (x / 2.0) == Expr(Op.TERMS, {x: 0.5})
- s = as_string('"ABC"')
- t = as_string('"123"')
- assert s // t == Expr(Op.STRING, ('"ABC123"', 1))
- assert s // x == Expr(Op.CONCAT, (s, x))
- assert x // s == Expr(Op.CONCAT, (x, s))
- c = as_complex(1.0, 2.0)
- assert -c == as_complex(-1.0, -2.0)
- assert c + c == as_expr((1 + 2j) * 2)
- assert c * c == as_expr((1 + 2j)**2)
- def test_substitute(self):
- x = as_symbol("x")
- y = as_symbol("y")
- z = as_symbol("z")
- a = as_array((x, y))
- assert x.substitute({x: y}) == y
- assert (x + y).substitute({x: z}) == y + z
- assert (x * y).substitute({x: z}) == y * z
- assert (x**4).substitute({x: z}) == z**4
- assert (x / y).substitute({x: z}) == z / y
- assert x.substitute({x: y + z}) == y + z
- assert a.substitute({x: y + z}) == as_array((y + z, y))
- assert as_ternary(x, y,
- z).substitute({x: y + z}) == as_ternary(y + z, y, z)
- assert as_eq(x, y).substitute({x: y + z}) == as_eq(y + z, y)
- def test_fromstring(self):
- x = as_symbol("x")
- y = as_symbol("y")
- z = as_symbol("z")
- f = as_symbol("f")
- s = as_string('"ABC"')
- t = as_string('"123"')
- a = as_array((x, y))
- assert fromstring("x") == x
- assert fromstring("+ x") == x
- assert fromstring("- x") == -x
- assert fromstring("x + y") == x + y
- assert fromstring("x + 1") == x + 1
- assert fromstring("x * y") == x * y
- assert fromstring("x * 2") == x * 2
- assert fromstring("x / y") == x / y
- assert fromstring("x ** 2", language=Language.Python) == x**2
- assert fromstring("x ** 2 ** 3", language=Language.Python) == x**2**3
- assert fromstring("(x + y) * z") == (x + y) * z
- assert fromstring("f(x)") == f(x)
- assert fromstring("f(x,y)") == f(x, y)
- assert fromstring("f[x]") == f[x]
- assert fromstring("f[x][y]") == f[x][y]
- assert fromstring('"ABC"') == s
- assert (normalize(
- fromstring('"ABC" // "123" ',
- language=Language.Fortran)) == s // t)
- assert fromstring('f("ABC")') == f(s)
- assert fromstring('MYSTRKIND_"ABC"') == as_string('"ABC"', "MYSTRKIND")
- assert fromstring("(/x, y/)") == a, fromstring("(/x, y/)")
- assert fromstring("f((/x, y/))") == f(a)
- assert fromstring("(/(x+y)*z/)") == as_array(((x + y) * z, ))
- assert fromstring("123") == as_number(123)
- assert fromstring("123_2") == as_number(123, 2)
- assert fromstring("123_myintkind") == as_number(123, "myintkind")
- assert fromstring("123.0") == as_number(123.0, 4)
- assert fromstring("123.0_4") == as_number(123.0, 4)
- assert fromstring("123.0_8") == as_number(123.0, 8)
- assert fromstring("123.0e0") == as_number(123.0, 4)
- assert fromstring("123.0d0") == as_number(123.0, 8)
- assert fromstring("123d0") == as_number(123.0, 8)
- assert fromstring("123e-0") == as_number(123.0, 4)
- assert fromstring("123d+0") == as_number(123.0, 8)
- assert fromstring("123.0_myrealkind") == as_number(123.0, "myrealkind")
- assert fromstring("3E4") == as_number(30000.0, 4)
- assert fromstring("(1, 2)") == as_complex(1, 2)
- assert fromstring("(1e2, PI)") == as_complex(as_number(100.0),
- as_symbol("PI"))
- assert fromstring("[1, 2]") == as_array((as_number(1), as_number(2)))
- assert fromstring("POINT(x, y=1)") == as_apply(as_symbol("POINT"),
- x,
- y=as_number(1))
- assert fromstring(
- 'PERSON(name="John", age=50, shape=(/34, 23/))') == as_apply(
- as_symbol("PERSON"),
- name=as_string('"John"'),
- age=as_number(50),
- shape=as_array((as_number(34), as_number(23))),
- )
- assert fromstring("x?y:z") == as_ternary(x, y, z)
- assert fromstring("*x") == as_deref(x)
- assert fromstring("**x") == as_deref(as_deref(x))
- assert fromstring("&x") == as_ref(x)
- assert fromstring("(*x) * (*y)") == as_deref(x) * as_deref(y)
- assert fromstring("(*x) * *y") == as_deref(x) * as_deref(y)
- assert fromstring("*x * *y") == as_deref(x) * as_deref(y)
- assert fromstring("*x**y") == as_deref(x) * as_deref(y)
- assert fromstring("x == y") == as_eq(x, y)
- assert fromstring("x != y") == as_ne(x, y)
- assert fromstring("x < y") == as_lt(x, y)
- assert fromstring("x > y") == as_gt(x, y)
- assert fromstring("x <= y") == as_le(x, y)
- assert fromstring("x >= y") == as_ge(x, y)
- assert fromstring("x .eq. y", language=Language.Fortran) == as_eq(x, y)
- assert fromstring("x .ne. y", language=Language.Fortran) == as_ne(x, y)
- assert fromstring("x .lt. y", language=Language.Fortran) == as_lt(x, y)
- assert fromstring("x .gt. y", language=Language.Fortran) == as_gt(x, y)
- assert fromstring("x .le. y", language=Language.Fortran) == as_le(x, y)
- assert fromstring("x .ge. y", language=Language.Fortran) == as_ge(x, y)
- def test_traverse(self):
- x = as_symbol("x")
- y = as_symbol("y")
- z = as_symbol("z")
- f = as_symbol("f")
- # Use traverse to substitute a symbol
- def replace_visit(s, r=z):
- if s == x:
- return r
- assert x.traverse(replace_visit) == z
- assert y.traverse(replace_visit) == y
- assert z.traverse(replace_visit) == z
- assert (f(y)).traverse(replace_visit) == f(y)
- assert (f(x)).traverse(replace_visit) == f(z)
- assert (f[y]).traverse(replace_visit) == f[y]
- assert (f[z]).traverse(replace_visit) == f[z]
- assert (x + y + z).traverse(replace_visit) == (2 * z + y)
- assert (x +
- f(y, x - z)).traverse(replace_visit) == (z +
- f(y, as_number(0)))
- assert as_eq(x, y).traverse(replace_visit) == as_eq(z, y)
- # Use traverse to collect symbols, method 1
- function_symbols = set()
- symbols = set()
- def collect_symbols(s):
- if s.op is Op.APPLY:
- oper = s.data[0]
- function_symbols.add(oper)
- if oper in symbols:
- symbols.remove(oper)
- elif s.op is Op.SYMBOL and s not in function_symbols:
- symbols.add(s)
- (x + f(y, x - z)).traverse(collect_symbols)
- assert function_symbols == {f}
- assert symbols == {x, y, z}
- # Use traverse to collect symbols, method 2
- def collect_symbols2(expr, symbols):
- if expr.op is Op.SYMBOL:
- symbols.add(expr)
- symbols = set()
- (x + f(y, x - z)).traverse(collect_symbols2, symbols)
- assert symbols == {x, y, z, f}
- # Use traverse to partially collect symbols
- def collect_symbols3(expr, symbols):
- if expr.op is Op.APPLY:
- # skip traversing function calls
- return expr
- if expr.op is Op.SYMBOL:
- symbols.add(expr)
- symbols = set()
- (x + f(y, x - z)).traverse(collect_symbols3, symbols)
- assert symbols == {x}
- def test_linear_solve(self):
- x = as_symbol("x")
- y = as_symbol("y")
- z = as_symbol("z")
- assert x.linear_solve(x) == (as_number(1), as_number(0))
- assert (x + 1).linear_solve(x) == (as_number(1), as_number(1))
- assert (2 * x).linear_solve(x) == (as_number(2), as_number(0))
- assert (2 * x + 3).linear_solve(x) == (as_number(2), as_number(3))
- assert as_number(3).linear_solve(x) == (as_number(0), as_number(3))
- assert y.linear_solve(x) == (as_number(0), y)
- assert (y * z).linear_solve(x) == (as_number(0), y * z)
- assert (x + y).linear_solve(x) == (as_number(1), y)
- assert (z * x + y).linear_solve(x) == (z, y)
- assert ((z + y) * x + y).linear_solve(x) == (z + y, y)
- assert (z * y * x + y).linear_solve(x) == (z * y, y)
- pytest.raises(RuntimeError, lambda: (x * x).linear_solve(x))
- def test_as_numer_denom(self):
- x = as_symbol("x")
- y = as_symbol("y")
- n = as_number(123)
- assert as_numer_denom(x) == (x, as_number(1))
- assert as_numer_denom(x / n) == (x, n)
- assert as_numer_denom(n / x) == (n, x)
- assert as_numer_denom(x / y) == (x, y)
- assert as_numer_denom(x * y) == (x * y, as_number(1))
- assert as_numer_denom(n + x / y) == (x + n * y, y)
- assert as_numer_denom(n + x / (y - x / n)) == (y * n**2, y * n - x)
- def test_polynomial_atoms(self):
- x = as_symbol("x")
- y = as_symbol("y")
- n = as_number(123)
- assert x.polynomial_atoms() == {x}
- assert n.polynomial_atoms() == set()
- assert (y[x]).polynomial_atoms() == {y[x]}
- assert (y(x)).polynomial_atoms() == {y(x)}
- assert (y(x) + x).polynomial_atoms() == {y(x), x}
- assert (y(x) * x[y]).polynomial_atoms() == {y(x), x[y]}
- assert (y(x)**x).polynomial_atoms() == {y(x)}
|