123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419 |
- import platform
- import warnings
- import fnmatch
- import itertools
- import pytest
- import sys
- import os
- import operator
- from fractions import Fraction
- from functools import reduce
- from collections import namedtuple
- import numpy.core.umath as ncu
- from numpy.core import _umath_tests as ncu_tests
- import numpy as np
- from numpy.testing import (
- assert_, assert_equal, assert_raises, assert_raises_regex,
- assert_array_equal, assert_almost_equal, assert_array_almost_equal,
- assert_array_max_ulp, assert_allclose, assert_no_warnings, suppress_warnings,
- _gen_alignment_data, assert_array_almost_equal_nulp, IS_WASM
- )
- from numpy.testing._private.utils import _glibc_older_than
- UFUNCS = [obj for obj in np.core.umath.__dict__.values()
- if isinstance(obj, np.ufunc)]
- UFUNCS_UNARY = [
- uf for uf in UFUNCS if uf.nin == 1
- ]
- UFUNCS_UNARY_FP = [
- uf for uf in UFUNCS_UNARY if 'f->f' in uf.types
- ]
- UFUNCS_BINARY = [
- uf for uf in UFUNCS if uf.nin == 2
- ]
- UFUNCS_BINARY_ACC = [
- uf for uf in UFUNCS_BINARY if hasattr(uf, "accumulate") and uf.nout == 1
- ]
- def interesting_binop_operands(val1, val2, dtype):
- """
- Helper to create "interesting" operands to cover common code paths:
- * scalar inputs
- * only first "values" is an array (e.g. scalar division fast-paths)
- * Longer array (SIMD) placing the value of interest at different positions
- * Oddly strided arrays which may not be SIMD compatible
- It does not attempt to cover unaligned access or mixed dtypes.
- These are normally handled by the casting/buffering machinery.
- This is not a fixture (currently), since I believe a fixture normally
- only yields once?
- """
- fill_value = 1 # could be a parameter, but maybe not an optional one?
- arr1 = np.full(10003, dtype=dtype, fill_value=fill_value)
- arr2 = np.full(10003, dtype=dtype, fill_value=fill_value)
- arr1[0] = val1
- arr2[0] = val2
- extractor = lambda res: res
- yield arr1[0], arr2[0], extractor, "scalars"
- extractor = lambda res: res
- yield arr1[0, ...], arr2[0, ...], extractor, "scalar-arrays"
- # reset array values to fill_value:
- arr1[0] = fill_value
- arr2[0] = fill_value
- for pos in [0, 1, 2, 3, 4, 5, -1, -2, -3, -4]:
- arr1[pos] = val1
- arr2[pos] = val2
- extractor = lambda res: res[pos]
- yield arr1, arr2, extractor, f"off-{pos}"
- yield arr1, arr2[pos], extractor, f"off-{pos}-with-scalar"
- arr1[pos] = fill_value
- arr2[pos] = fill_value
- for stride in [-1, 113]:
- op1 = arr1[::stride]
- op2 = arr2[::stride]
- op1[10] = val1
- op2[10] = val2
- extractor = lambda res: res[10]
- yield op1, op2, extractor, f"stride-{stride}"
- op1[10] = fill_value
- op2[10] = fill_value
- def on_powerpc():
- """ True if we are running on a Power PC platform."""
- return platform.processor() == 'powerpc' or \
- platform.machine().startswith('ppc')
- def bad_arcsinh():
- """The blocklisted trig functions are not accurate on aarch64/PPC for
- complex256. Rather than dig through the actual problem skip the
- test. This should be fixed when we can move past glibc2.17
- which is the version in manylinux2014
- """
- if platform.machine() == 'aarch64':
- x = 1.78e-10
- elif on_powerpc():
- x = 2.16e-10
- else:
- return False
- v1 = np.arcsinh(np.float128(x))
- v2 = np.arcsinh(np.complex256(x)).real
- # The eps for float128 is 1-e33, so this is way bigger
- return abs((v1 / v2) - 1.0) > 1e-23
- class _FilterInvalids:
- def setup_method(self):
- self.olderr = np.seterr(invalid='ignore')
- def teardown_method(self):
- np.seterr(**self.olderr)
- class TestConstants:
- def test_pi(self):
- assert_allclose(ncu.pi, 3.141592653589793, 1e-15)
- def test_e(self):
- assert_allclose(ncu.e, 2.718281828459045, 1e-15)
- def test_euler_gamma(self):
- assert_allclose(ncu.euler_gamma, 0.5772156649015329, 1e-15)
- class TestOut:
- def test_out_subok(self):
- for subok in (True, False):
- a = np.array(0.5)
- o = np.empty(())
- r = np.add(a, 2, o, subok=subok)
- assert_(r is o)
- r = np.add(a, 2, out=o, subok=subok)
- assert_(r is o)
- r = np.add(a, 2, out=(o,), subok=subok)
- assert_(r is o)
- d = np.array(5.7)
- o1 = np.empty(())
- o2 = np.empty((), dtype=np.int32)
- r1, r2 = np.frexp(d, o1, None, subok=subok)
- assert_(r1 is o1)
- r1, r2 = np.frexp(d, None, o2, subok=subok)
- assert_(r2 is o2)
- r1, r2 = np.frexp(d, o1, o2, subok=subok)
- assert_(r1 is o1)
- assert_(r2 is o2)
- r1, r2 = np.frexp(d, out=(o1, None), subok=subok)
- assert_(r1 is o1)
- r1, r2 = np.frexp(d, out=(None, o2), subok=subok)
- assert_(r2 is o2)
- r1, r2 = np.frexp(d, out=(o1, o2), subok=subok)
- assert_(r1 is o1)
- assert_(r2 is o2)
- with assert_raises(TypeError):
- # Out argument must be tuple, since there are multiple outputs.
- r1, r2 = np.frexp(d, out=o1, subok=subok)
- assert_raises(TypeError, np.add, a, 2, o, o, subok=subok)
- assert_raises(TypeError, np.add, a, 2, o, out=o, subok=subok)
- assert_raises(TypeError, np.add, a, 2, None, out=o, subok=subok)
- assert_raises(ValueError, np.add, a, 2, out=(o, o), subok=subok)
- assert_raises(ValueError, np.add, a, 2, out=(), subok=subok)
- assert_raises(TypeError, np.add, a, 2, [], subok=subok)
- assert_raises(TypeError, np.add, a, 2, out=[], subok=subok)
- assert_raises(TypeError, np.add, a, 2, out=([],), subok=subok)
- o.flags.writeable = False
- assert_raises(ValueError, np.add, a, 2, o, subok=subok)
- assert_raises(ValueError, np.add, a, 2, out=o, subok=subok)
- assert_raises(ValueError, np.add, a, 2, out=(o,), subok=subok)
- def test_out_wrap_subok(self):
- class ArrayWrap(np.ndarray):
- __array_priority__ = 10
- def __new__(cls, arr):
- return np.asarray(arr).view(cls).copy()
- def __array_wrap__(self, arr, context):
- return arr.view(type(self))
- for subok in (True, False):
- a = ArrayWrap([0.5])
- r = np.add(a, 2, subok=subok)
- if subok:
- assert_(isinstance(r, ArrayWrap))
- else:
- assert_(type(r) == np.ndarray)
- r = np.add(a, 2, None, subok=subok)
- if subok:
- assert_(isinstance(r, ArrayWrap))
- else:
- assert_(type(r) == np.ndarray)
- r = np.add(a, 2, out=None, subok=subok)
- if subok:
- assert_(isinstance(r, ArrayWrap))
- else:
- assert_(type(r) == np.ndarray)
- r = np.add(a, 2, out=(None,), subok=subok)
- if subok:
- assert_(isinstance(r, ArrayWrap))
- else:
- assert_(type(r) == np.ndarray)
- d = ArrayWrap([5.7])
- o1 = np.empty((1,))
- o2 = np.empty((1,), dtype=np.int32)
- r1, r2 = np.frexp(d, o1, subok=subok)
- if subok:
- assert_(isinstance(r2, ArrayWrap))
- else:
- assert_(type(r2) == np.ndarray)
- r1, r2 = np.frexp(d, o1, None, subok=subok)
- if subok:
- assert_(isinstance(r2, ArrayWrap))
- else:
- assert_(type(r2) == np.ndarray)
- r1, r2 = np.frexp(d, None, o2, subok=subok)
- if subok:
- assert_(isinstance(r1, ArrayWrap))
- else:
- assert_(type(r1) == np.ndarray)
- r1, r2 = np.frexp(d, out=(o1, None), subok=subok)
- if subok:
- assert_(isinstance(r2, ArrayWrap))
- else:
- assert_(type(r2) == np.ndarray)
- r1, r2 = np.frexp(d, out=(None, o2), subok=subok)
- if subok:
- assert_(isinstance(r1, ArrayWrap))
- else:
- assert_(type(r1) == np.ndarray)
- with assert_raises(TypeError):
- # Out argument must be tuple, since there are multiple outputs.
- r1, r2 = np.frexp(d, out=o1, subok=subok)
- class TestComparisons:
- import operator
- @pytest.mark.parametrize('dtype', np.sctypes['uint'] + np.sctypes['int'] +
- np.sctypes['float'] + [np.bool_])
- @pytest.mark.parametrize('py_comp,np_comp', [
- (operator.lt, np.less),
- (operator.le, np.less_equal),
- (operator.gt, np.greater),
- (operator.ge, np.greater_equal),
- (operator.eq, np.equal),
- (operator.ne, np.not_equal)
- ])
- def test_comparison_functions(self, dtype, py_comp, np_comp):
- # Initialize input arrays
- if dtype == np.bool_:
- a = np.random.choice(a=[False, True], size=1000)
- b = np.random.choice(a=[False, True], size=1000)
- scalar = True
- else:
- a = np.random.randint(low=1, high=10, size=1000).astype(dtype)
- b = np.random.randint(low=1, high=10, size=1000).astype(dtype)
- scalar = 5
- np_scalar = np.dtype(dtype).type(scalar)
- a_lst = a.tolist()
- b_lst = b.tolist()
- # (Binary) Comparison (x1=array, x2=array)
- comp_b = np_comp(a, b).view(np.uint8)
- comp_b_list = [int(py_comp(x, y)) for x, y in zip(a_lst, b_lst)]
- # (Scalar1) Comparison (x1=scalar, x2=array)
- comp_s1 = np_comp(np_scalar, b).view(np.uint8)
- comp_s1_list = [int(py_comp(scalar, x)) for x in b_lst]
- # (Scalar2) Comparison (x1=array, x2=scalar)
- comp_s2 = np_comp(a, np_scalar).view(np.uint8)
- comp_s2_list = [int(py_comp(x, scalar)) for x in a_lst]
- # Sequence: Binary, Scalar1 and Scalar2
- assert_(comp_b.tolist() == comp_b_list,
- f"Failed comparison ({py_comp.__name__})")
- assert_(comp_s1.tolist() == comp_s1_list,
- f"Failed comparison ({py_comp.__name__})")
- assert_(comp_s2.tolist() == comp_s2_list,
- f"Failed comparison ({py_comp.__name__})")
- def test_ignore_object_identity_in_equal(self):
- # Check comparing identical objects whose comparison
- # is not a simple boolean, e.g., arrays that are compared elementwise.
- a = np.array([np.array([1, 2, 3]), None], dtype=object)
- assert_raises(ValueError, np.equal, a, a)
- # Check error raised when comparing identical non-comparable objects.
- class FunkyType:
- def __eq__(self, other):
- raise TypeError("I won't compare")
- a = np.array([FunkyType()])
- assert_raises(TypeError, np.equal, a, a)
- # Check identity doesn't override comparison mismatch.
- a = np.array([np.nan], dtype=object)
- assert_equal(np.equal(a, a), [False])
- def test_ignore_object_identity_in_not_equal(self):
- # Check comparing identical objects whose comparison
- # is not a simple boolean, e.g., arrays that are compared elementwise.
- a = np.array([np.array([1, 2, 3]), None], dtype=object)
- assert_raises(ValueError, np.not_equal, a, a)
- # Check error raised when comparing identical non-comparable objects.
- class FunkyType:
- def __ne__(self, other):
- raise TypeError("I won't compare")
- a = np.array([FunkyType()])
- assert_raises(TypeError, np.not_equal, a, a)
- # Check identity doesn't override comparison mismatch.
- a = np.array([np.nan], dtype=object)
- assert_equal(np.not_equal(a, a), [True])
- def test_error_in_equal_reduce(self):
- # gh-20929
- # make sure np.equal.reduce raises a TypeError if an array is passed
- # without specifying the dtype
- a = np.array([0, 0])
- assert_equal(np.equal.reduce(a, dtype=bool), True)
- assert_raises(TypeError, np.equal.reduce, a)
- def test_object_dtype(self):
- assert np.equal(1, [1], dtype=object).dtype == object
- assert np.equal(1, [1], signature=(None, None, "O")).dtype == object
- def test_object_nonbool_dtype_error(self):
- # bool output dtype is fine of course:
- assert np.equal(1, [1], dtype=bool).dtype == bool
- # but the following are examples do not have a loop:
- with pytest.raises(TypeError, match="No loop matching"):
- np.equal(1, 1, dtype=np.int64)
- with pytest.raises(TypeError, match="No loop matching"):
- np.equal(1, 1, sig=(None, None, "l"))
- class TestAdd:
- def test_reduce_alignment(self):
- # gh-9876
- # make sure arrays with weird strides work with the optimizations in
- # pairwise_sum_@TYPE@. On x86, the 'b' field will count as aligned at a
- # 4 byte offset, even though its itemsize is 8.
- a = np.zeros(2, dtype=[('a', np.int32), ('b', np.float64)])
- a['a'] = -1
- assert_equal(a['b'].sum(), 0)
- class TestDivision:
- def test_division_int(self):
- # int division should follow Python
- x = np.array([5, 10, 90, 100, -5, -10, -90, -100, -120])
- if 5 / 10 == 0.5:
- assert_equal(x / 100, [0.05, 0.1, 0.9, 1,
- -0.05, -0.1, -0.9, -1, -1.2])
- else:
- assert_equal(x / 100, [0, 0, 0, 1, -1, -1, -1, -1, -2])
- assert_equal(x // 100, [0, 0, 0, 1, -1, -1, -1, -1, -2])
- assert_equal(x % 100, [5, 10, 90, 0, 95, 90, 10, 0, 80])
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- @pytest.mark.parametrize("dtype,ex_val", itertools.product(
- np.sctypes['int'] + np.sctypes['uint'], (
- (
- # dividend
- "np.array(range(fo.max-lsize, fo.max)).astype(dtype),"
- # divisors
- "np.arange(lsize).astype(dtype),"
- # scalar divisors
- "range(15)"
- ),
- (
- # dividend
- "np.arange(fo.min, fo.min+lsize).astype(dtype),"
- # divisors
- "np.arange(lsize//-2, lsize//2).astype(dtype),"
- # scalar divisors
- "range(fo.min, fo.min + 15)"
- ), (
- # dividend
- "np.array(range(fo.max-lsize, fo.max)).astype(dtype),"
- # divisors
- "np.arange(lsize).astype(dtype),"
- # scalar divisors
- "[1,3,9,13,neg, fo.min+1, fo.min//2, fo.max//3, fo.max//4]"
- )
- )
- ))
- def test_division_int_boundary(self, dtype, ex_val):
- fo = np.iinfo(dtype)
- neg = -1 if fo.min < 0 else 1
- # Large enough to test SIMD loops and remaind elements
- lsize = 512 + 7
- a, b, divisors = eval(ex_val)
- a_lst, b_lst = a.tolist(), b.tolist()
- c_div = lambda n, d: (
- 0 if d == 0 else (
- fo.min if (n and n == fo.min and d == -1) else n//d
- )
- )
- with np.errstate(divide='ignore'):
- ac = a.copy()
- ac //= b
- div_ab = a // b
- div_lst = [c_div(x, y) for x, y in zip(a_lst, b_lst)]
- msg = "Integer arrays floor division check (//)"
- assert all(div_ab == div_lst), msg
- msg_eq = "Integer arrays floor division check (//=)"
- assert all(ac == div_lst), msg_eq
- for divisor in divisors:
- ac = a.copy()
- with np.errstate(divide='ignore', over='ignore'):
- div_a = a // divisor
- ac //= divisor
- div_lst = [c_div(i, divisor) for i in a_lst]
- assert all(div_a == div_lst), msg
- assert all(ac == div_lst), msg_eq
- with np.errstate(divide='raise', over='raise'):
- if 0 in b:
- # Verify overflow case
- with pytest.raises(FloatingPointError,
- match="divide by zero encountered in floor_divide"):
- a // b
- else:
- a // b
- if fo.min and fo.min in a:
- with pytest.raises(FloatingPointError,
- match='overflow encountered in floor_divide'):
- a // -1
- elif fo.min:
- a // -1
- with pytest.raises(FloatingPointError,
- match="divide by zero encountered in floor_divide"):
- a // 0
- with pytest.raises(FloatingPointError,
- match="divide by zero encountered in floor_divide"):
- ac = a.copy()
- ac //= 0
- np.array([], dtype=dtype) // 0
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- @pytest.mark.parametrize("dtype,ex_val", itertools.product(
- np.sctypes['int'] + np.sctypes['uint'], (
- "np.array([fo.max, 1, 2, 1, 1, 2, 3], dtype=dtype)",
- "np.array([fo.min, 1, -2, 1, 1, 2, -3]).astype(dtype)",
- "np.arange(fo.min, fo.min+(100*10), 10, dtype=dtype)",
- "np.array(range(fo.max-(100*7), fo.max, 7)).astype(dtype)",
- )
- ))
- def test_division_int_reduce(self, dtype, ex_val):
- fo = np.iinfo(dtype)
- a = eval(ex_val)
- lst = a.tolist()
- c_div = lambda n, d: (
- 0 if d == 0 or (n and n == fo.min and d == -1) else n//d
- )
- with np.errstate(divide='ignore'):
- div_a = np.floor_divide.reduce(a)
- div_lst = reduce(c_div, lst)
- msg = "Reduce floor integer division check"
- assert div_a == div_lst, msg
- with np.errstate(divide='raise', over='raise'):
- with pytest.raises(FloatingPointError,
- match="divide by zero encountered in reduce"):
- np.floor_divide.reduce(np.arange(-100, 100).astype(dtype))
- if fo.min:
- with pytest.raises(FloatingPointError,
- match='overflow encountered in reduce'):
- np.floor_divide.reduce(
- np.array([fo.min, 1, -1], dtype=dtype)
- )
- @pytest.mark.parametrize(
- "dividend,divisor,quotient",
- [(np.timedelta64(2,'Y'), np.timedelta64(2,'M'), 12),
- (np.timedelta64(2,'Y'), np.timedelta64(-2,'M'), -12),
- (np.timedelta64(-2,'Y'), np.timedelta64(2,'M'), -12),
- (np.timedelta64(-2,'Y'), np.timedelta64(-2,'M'), 12),
- (np.timedelta64(2,'M'), np.timedelta64(-2,'Y'), -1),
- (np.timedelta64(2,'Y'), np.timedelta64(0,'M'), 0),
- (np.timedelta64(2,'Y'), 2, np.timedelta64(1,'Y')),
- (np.timedelta64(2,'Y'), -2, np.timedelta64(-1,'Y')),
- (np.timedelta64(-2,'Y'), 2, np.timedelta64(-1,'Y')),
- (np.timedelta64(-2,'Y'), -2, np.timedelta64(1,'Y')),
- (np.timedelta64(-2,'Y'), -2, np.timedelta64(1,'Y')),
- (np.timedelta64(-2,'Y'), -3, np.timedelta64(0,'Y')),
- (np.timedelta64(-2,'Y'), 0, np.timedelta64('Nat','Y')),
- ])
- def test_division_int_timedelta(self, dividend, divisor, quotient):
- # If either divisor is 0 or quotient is Nat, check for division by 0
- if divisor and (isinstance(quotient, int) or not np.isnat(quotient)):
- msg = "Timedelta floor division check"
- assert dividend // divisor == quotient, msg
- # Test for arrays as well
- msg = "Timedelta arrays floor division check"
- dividend_array = np.array([dividend]*5)
- quotient_array = np.array([quotient]*5)
- assert all(dividend_array // divisor == quotient_array), msg
- else:
- if IS_WASM:
- pytest.skip("fp errors don't work in wasm")
- with np.errstate(divide='raise', invalid='raise'):
- with pytest.raises(FloatingPointError):
- dividend // divisor
- def test_division_complex(self):
- # check that implementation is correct
- msg = "Complex division implementation check"
- x = np.array([1. + 1.*1j, 1. + .5*1j, 1. + 2.*1j], dtype=np.complex128)
- assert_almost_equal(x**2/x, x, err_msg=msg)
- # check overflow, underflow
- msg = "Complex division overflow/underflow check"
- x = np.array([1.e+110, 1.e-110], dtype=np.complex128)
- y = x**2/x
- assert_almost_equal(y/x, [1, 1], err_msg=msg)
- def test_zero_division_complex(self):
- with np.errstate(invalid="ignore", divide="ignore"):
- x = np.array([0.0], dtype=np.complex128)
- y = 1.0/x
- assert_(np.isinf(y)[0])
- y = complex(np.inf, np.nan)/x
- assert_(np.isinf(y)[0])
- y = complex(np.nan, np.inf)/x
- assert_(np.isinf(y)[0])
- y = complex(np.inf, np.inf)/x
- assert_(np.isinf(y)[0])
- y = 0.0/x
- assert_(np.isnan(y)[0])
- def test_floor_division_complex(self):
- # check that floor division, divmod and remainder raises type errors
- x = np.array([.9 + 1j, -.1 + 1j, .9 + .5*1j, .9 + 2.*1j], dtype=np.complex128)
- with pytest.raises(TypeError):
- x // 7
- with pytest.raises(TypeError):
- np.divmod(x, 7)
- with pytest.raises(TypeError):
- np.remainder(x, 7)
- def test_floor_division_signed_zero(self):
- # Check that the sign bit is correctly set when dividing positive and
- # negative zero by one.
- x = np.zeros(10)
- assert_equal(np.signbit(x//1), 0)
- assert_equal(np.signbit((-x)//1), 1)
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- @pytest.mark.parametrize('dtype', np.typecodes['Float'])
- def test_floor_division_errors(self, dtype):
- fnan = np.array(np.nan, dtype=dtype)
- fone = np.array(1.0, dtype=dtype)
- fzer = np.array(0.0, dtype=dtype)
- finf = np.array(np.inf, dtype=dtype)
- # divide by zero error check
- with np.errstate(divide='raise', invalid='ignore'):
- assert_raises(FloatingPointError, np.floor_divide, fone, fzer)
- with np.errstate(divide='ignore', invalid='raise'):
- np.floor_divide(fone, fzer)
- # The following already contain a NaN and should not warn
- with np.errstate(all='raise'):
- np.floor_divide(fnan, fone)
- np.floor_divide(fone, fnan)
- np.floor_divide(fnan, fzer)
- np.floor_divide(fzer, fnan)
- @pytest.mark.parametrize('dtype', np.typecodes['Float'])
- def test_floor_division_corner_cases(self, dtype):
- # test corner cases like 1.0//0.0 for errors and return vals
- x = np.zeros(10, dtype=dtype)
- y = np.ones(10, dtype=dtype)
- fnan = np.array(np.nan, dtype=dtype)
- fone = np.array(1.0, dtype=dtype)
- fzer = np.array(0.0, dtype=dtype)
- finf = np.array(np.inf, dtype=dtype)
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning, "invalid value encountered in floor_divide")
- div = np.floor_divide(fnan, fone)
- assert(np.isnan(div)), "dt: %s, div: %s" % (dt, div)
- div = np.floor_divide(fone, fnan)
- assert(np.isnan(div)), "dt: %s, div: %s" % (dt, div)
- div = np.floor_divide(fnan, fzer)
- assert(np.isnan(div)), "dt: %s, div: %s" % (dt, div)
- # verify 1.0//0.0 computations return inf
- with np.errstate(divide='ignore'):
- z = np.floor_divide(y, x)
- assert_(np.isinf(z).all())
- def floor_divide_and_remainder(x, y):
- return (np.floor_divide(x, y), np.remainder(x, y))
- def _signs(dt):
- if dt in np.typecodes['UnsignedInteger']:
- return (+1,)
- else:
- return (+1, -1)
- class TestRemainder:
- def test_remainder_basic(self):
- dt = np.typecodes['AllInteger'] + np.typecodes['Float']
- for op in [floor_divide_and_remainder, np.divmod]:
- for dt1, dt2 in itertools.product(dt, dt):
- for sg1, sg2 in itertools.product(_signs(dt1), _signs(dt2)):
- fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s'
- msg = fmt % (op.__name__, dt1, dt2, sg1, sg2)
- a = np.array(sg1*71, dtype=dt1)
- b = np.array(sg2*19, dtype=dt2)
- div, rem = op(a, b)
- assert_equal(div*b + rem, a, err_msg=msg)
- if sg2 == -1:
- assert_(b < rem <= 0, msg)
- else:
- assert_(b > rem >= 0, msg)
- def test_float_remainder_exact(self):
- # test that float results are exact for small integers. This also
- # holds for the same integers scaled by powers of two.
- nlst = list(range(-127, 0))
- plst = list(range(1, 128))
- dividend = nlst + [0] + plst
- divisor = nlst + plst
- arg = list(itertools.product(dividend, divisor))
- tgt = list(divmod(*t) for t in arg)
- a, b = np.array(arg, dtype=int).T
- # convert exact integer results from Python to float so that
- # signed zero can be used, it is checked.
- tgtdiv, tgtrem = np.array(tgt, dtype=float).T
- tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
- tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)
- for op in [floor_divide_and_remainder, np.divmod]:
- for dt in np.typecodes['Float']:
- msg = 'op: %s, dtype: %s' % (op.__name__, dt)
- fa = a.astype(dt)
- fb = b.astype(dt)
- div, rem = op(fa, fb)
- assert_equal(div, tgtdiv, err_msg=msg)
- assert_equal(rem, tgtrem, err_msg=msg)
- def test_float_remainder_roundoff(self):
- # gh-6127
- dt = np.typecodes['Float']
- for op in [floor_divide_and_remainder, np.divmod]:
- for dt1, dt2 in itertools.product(dt, dt):
- for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
- fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s'
- msg = fmt % (op.__name__, dt1, dt2, sg1, sg2)
- a = np.array(sg1*78*6e-8, dtype=dt1)
- b = np.array(sg2*6e-8, dtype=dt2)
- div, rem = op(a, b)
- # Equal assertion should hold when fmod is used
- assert_equal(div*b + rem, a, err_msg=msg)
- if sg2 == -1:
- assert_(b < rem <= 0, msg)
- else:
- assert_(b > rem >= 0, msg)
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- @pytest.mark.xfail(sys.platform.startswith("darwin"),
- reason="MacOS seems to not give the correct 'invalid' warning for "
- "`fmod`. Hopefully, others always do.")
- @pytest.mark.parametrize('dtype', np.typecodes['Float'])
- def test_float_divmod_errors(self, dtype):
- # Check valid errors raised for divmod and remainder
- fzero = np.array(0.0, dtype=dtype)
- fone = np.array(1.0, dtype=dtype)
- finf = np.array(np.inf, dtype=dtype)
- fnan = np.array(np.nan, dtype=dtype)
- # since divmod is combination of both remainder and divide
- # ops it will set both dividebyzero and invalid flags
- with np.errstate(divide='raise', invalid='ignore'):
- assert_raises(FloatingPointError, np.divmod, fone, fzero)
- with np.errstate(divide='ignore', invalid='raise'):
- assert_raises(FloatingPointError, np.divmod, fone, fzero)
- with np.errstate(invalid='raise'):
- assert_raises(FloatingPointError, np.divmod, fzero, fzero)
- with np.errstate(invalid='raise'):
- assert_raises(FloatingPointError, np.divmod, finf, finf)
- with np.errstate(divide='ignore', invalid='raise'):
- assert_raises(FloatingPointError, np.divmod, finf, fzero)
- with np.errstate(divide='raise', invalid='ignore'):
- # inf / 0 does not set any flags, only the modulo creates a NaN
- np.divmod(finf, fzero)
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- @pytest.mark.xfail(sys.platform.startswith("darwin"),
- reason="MacOS seems to not give the correct 'invalid' warning for "
- "`fmod`. Hopefully, others always do.")
- @pytest.mark.parametrize('dtype', np.typecodes['Float'])
- @pytest.mark.parametrize('fn', [np.fmod, np.remainder])
- def test_float_remainder_errors(self, dtype, fn):
- fzero = np.array(0.0, dtype=dtype)
- fone = np.array(1.0, dtype=dtype)
- finf = np.array(np.inf, dtype=dtype)
- fnan = np.array(np.nan, dtype=dtype)
- # The following already contain a NaN and should not warn.
- with np.errstate(all='raise'):
- with pytest.raises(FloatingPointError,
- match="invalid value"):
- fn(fone, fzero)
- fn(fnan, fzero)
- fn(fzero, fnan)
- fn(fone, fnan)
- fn(fnan, fone)
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- def test_float_remainder_overflow(self):
- a = np.finfo(np.float64).tiny
- with np.errstate(over='ignore', invalid='ignore'):
- div, mod = np.divmod(4, a)
- np.isinf(div)
- assert_(mod == 0)
- with np.errstate(over='raise', invalid='ignore'):
- assert_raises(FloatingPointError, np.divmod, 4, a)
- with np.errstate(invalid='raise', over='ignore'):
- assert_raises(FloatingPointError, np.divmod, 4, a)
- def test_float_divmod_corner_cases(self):
- # check nan cases
- for dt in np.typecodes['Float']:
- fnan = np.array(np.nan, dtype=dt)
- fone = np.array(1.0, dtype=dt)
- fzer = np.array(0.0, dtype=dt)
- finf = np.array(np.inf, dtype=dt)
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning, "invalid value encountered in divmod")
- sup.filter(RuntimeWarning, "divide by zero encountered in divmod")
- div, rem = np.divmod(fone, fzer)
- assert(np.isinf(div)), 'dt: %s, div: %s' % (dt, rem)
- assert(np.isnan(rem)), 'dt: %s, rem: %s' % (dt, rem)
- div, rem = np.divmod(fzer, fzer)
- assert(np.isnan(rem)), 'dt: %s, rem: %s' % (dt, rem)
- assert_(np.isnan(div)), 'dt: %s, rem: %s' % (dt, rem)
- div, rem = np.divmod(finf, finf)
- assert(np.isnan(div)), 'dt: %s, rem: %s' % (dt, rem)
- assert(np.isnan(rem)), 'dt: %s, rem: %s' % (dt, rem)
- div, rem = np.divmod(finf, fzer)
- assert(np.isinf(div)), 'dt: %s, rem: %s' % (dt, rem)
- assert(np.isnan(rem)), 'dt: %s, rem: %s' % (dt, rem)
- div, rem = np.divmod(fnan, fone)
- assert(np.isnan(rem)), "dt: %s, rem: %s" % (dt, rem)
- assert(np.isnan(div)), "dt: %s, rem: %s" % (dt, rem)
- div, rem = np.divmod(fone, fnan)
- assert(np.isnan(rem)), "dt: %s, rem: %s" % (dt, rem)
- assert(np.isnan(div)), "dt: %s, rem: %s" % (dt, rem)
- div, rem = np.divmod(fnan, fzer)
- assert(np.isnan(rem)), "dt: %s, rem: %s" % (dt, rem)
- assert(np.isnan(div)), "dt: %s, rem: %s" % (dt, rem)
- def test_float_remainder_corner_cases(self):
- # Check remainder magnitude.
- for dt in np.typecodes['Float']:
- fone = np.array(1.0, dtype=dt)
- fzer = np.array(0.0, dtype=dt)
- fnan = np.array(np.nan, dtype=dt)
- b = np.array(1.0, dtype=dt)
- a = np.nextafter(np.array(0.0, dtype=dt), -b)
- rem = np.remainder(a, b)
- assert_(rem <= b, 'dt: %s' % dt)
- rem = np.remainder(-a, -b)
- assert_(rem >= -b, 'dt: %s' % dt)
- # Check nans, inf
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning, "invalid value encountered in remainder")
- sup.filter(RuntimeWarning, "invalid value encountered in fmod")
- for dt in np.typecodes['Float']:
- fone = np.array(1.0, dtype=dt)
- fzer = np.array(0.0, dtype=dt)
- finf = np.array(np.inf, dtype=dt)
- fnan = np.array(np.nan, dtype=dt)
- rem = np.remainder(fone, fzer)
- assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
- # MSVC 2008 returns NaN here, so disable the check.
- #rem = np.remainder(fone, finf)
- #assert_(rem == fone, 'dt: %s, rem: %s' % (dt, rem))
- rem = np.remainder(finf, fone)
- fmod = np.fmod(finf, fone)
- assert_(np.isnan(fmod), 'dt: %s, fmod: %s' % (dt, fmod))
- assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
- rem = np.remainder(finf, finf)
- fmod = np.fmod(finf, fone)
- assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
- assert_(np.isnan(fmod), 'dt: %s, fmod: %s' % (dt, fmod))
- rem = np.remainder(finf, fzer)
- fmod = np.fmod(finf, fzer)
- assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
- assert_(np.isnan(fmod), 'dt: %s, fmod: %s' % (dt, fmod))
- rem = np.remainder(fone, fnan)
- fmod = np.fmod(fone, fnan)
- assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
- assert_(np.isnan(fmod), 'dt: %s, fmod: %s' % (dt, fmod))
- rem = np.remainder(fnan, fzer)
- fmod = np.fmod(fnan, fzer)
- assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
- assert_(np.isnan(fmod), 'dt: %s, fmod: %s' % (dt, rem))
- rem = np.remainder(fnan, fone)
- fmod = np.fmod(fnan, fone)
- assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
- assert_(np.isnan(fmod), 'dt: %s, fmod: %s' % (dt, rem))
- class TestDivisionIntegerOverflowsAndDivideByZero:
- result_type = namedtuple('result_type',
- ['nocast', 'casted'])
- helper_lambdas = {
- 'zero': lambda dtype: 0,
- 'min': lambda dtype: np.iinfo(dtype).min,
- 'neg_min': lambda dtype: -np.iinfo(dtype).min,
- 'min-zero': lambda dtype: (np.iinfo(dtype).min, 0),
- 'neg_min-zero': lambda dtype: (-np.iinfo(dtype).min, 0),
- }
- overflow_results = {
- np.remainder: result_type(
- helper_lambdas['zero'], helper_lambdas['zero']),
- np.fmod: result_type(
- helper_lambdas['zero'], helper_lambdas['zero']),
- operator.mod: result_type(
- helper_lambdas['zero'], helper_lambdas['zero']),
- operator.floordiv: result_type(
- helper_lambdas['min'], helper_lambdas['neg_min']),
- np.floor_divide: result_type(
- helper_lambdas['min'], helper_lambdas['neg_min']),
- np.divmod: result_type(
- helper_lambdas['min-zero'], helper_lambdas['neg_min-zero'])
- }
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- @pytest.mark.parametrize("dtype", np.typecodes["Integer"])
- def test_signed_division_overflow(self, dtype):
- to_check = interesting_binop_operands(np.iinfo(dtype).min, -1, dtype)
- for op1, op2, extractor, operand_identifier in to_check:
- with pytest.warns(RuntimeWarning, match="overflow encountered"):
- res = op1 // op2
- assert res.dtype == op1.dtype
- assert extractor(res) == np.iinfo(op1.dtype).min
- # Remainder is well defined though, and does not warn:
- res = op1 % op2
- assert res.dtype == op1.dtype
- assert extractor(res) == 0
- # Check fmod as well:
- res = np.fmod(op1, op2)
- assert extractor(res) == 0
- # Divmod warns for the division part:
- with pytest.warns(RuntimeWarning, match="overflow encountered"):
- res1, res2 = np.divmod(op1, op2)
- assert res1.dtype == res2.dtype == op1.dtype
- assert extractor(res1) == np.iinfo(op1.dtype).min
- assert extractor(res2) == 0
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- @pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
- def test_divide_by_zero(self, dtype):
- # Note that the return value cannot be well defined here, but NumPy
- # currently uses 0 consistently. This could be changed.
- to_check = interesting_binop_operands(1, 0, dtype)
- for op1, op2, extractor, operand_identifier in to_check:
- with pytest.warns(RuntimeWarning, match="divide by zero"):
- res = op1 // op2
- assert res.dtype == op1.dtype
- assert extractor(res) == 0
- with pytest.warns(RuntimeWarning, match="divide by zero"):
- res1, res2 = np.divmod(op1, op2)
- assert res1.dtype == res2.dtype == op1.dtype
- assert extractor(res1) == 0
- assert extractor(res2) == 0
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- @pytest.mark.parametrize("dividend_dtype",
- np.sctypes['int'])
- @pytest.mark.parametrize("divisor_dtype",
- np.sctypes['int'])
- @pytest.mark.parametrize("operation",
- [np.remainder, np.fmod, np.divmod, np.floor_divide,
- operator.mod, operator.floordiv])
- @np.errstate(divide='warn', over='warn')
- def test_overflows(self, dividend_dtype, divisor_dtype, operation):
- # SIMD tries to perform the operation on as many elements as possible
- # that is a multiple of the register's size. We resort to the
- # default implementation for the leftover elements.
- # We try to cover all paths here.
- arrays = [np.array([np.iinfo(dividend_dtype).min]*i,
- dtype=dividend_dtype) for i in range(1, 129)]
- divisor = np.array([-1], dtype=divisor_dtype)
- # If dividend is a larger type than the divisor (`else` case),
- # then, result will be a larger type than dividend and will not
- # result in an overflow for `divmod` and `floor_divide`.
- if np.dtype(dividend_dtype).itemsize >= np.dtype(
- divisor_dtype).itemsize and operation in (
- np.divmod, np.floor_divide, operator.floordiv):
- with pytest.warns(
- RuntimeWarning,
- match="overflow encountered in"):
- result = operation(
- dividend_dtype(np.iinfo(dividend_dtype).min),
- divisor_dtype(-1)
- )
- assert result == self.overflow_results[operation].nocast(
- dividend_dtype)
- # Arrays
- for a in arrays:
- # In case of divmod, we need to flatten the result
- # column first as we get a column vector of quotient and
- # remainder and a normal flatten of the expected result.
- with pytest.warns(
- RuntimeWarning,
- match="overflow encountered in"):
- result = np.array(operation(a, divisor)).flatten('f')
- expected_array = np.array(
- [self.overflow_results[operation].nocast(
- dividend_dtype)]*len(a)).flatten()
- assert_array_equal(result, expected_array)
- else:
- # Scalars
- result = operation(
- dividend_dtype(np.iinfo(dividend_dtype).min),
- divisor_dtype(-1)
- )
- assert result == self.overflow_results[operation].casted(
- dividend_dtype)
- # Arrays
- for a in arrays:
- # See above comment on flatten
- result = np.array(operation(a, divisor)).flatten('f')
- expected_array = np.array(
- [self.overflow_results[operation].casted(
- dividend_dtype)]*len(a)).flatten()
- assert_array_equal(result, expected_array)
- class TestCbrt:
- def test_cbrt_scalar(self):
- assert_almost_equal((np.cbrt(np.float32(-2.5)**3)), -2.5)
- def test_cbrt(self):
- x = np.array([1., 2., -3., np.inf, -np.inf])
- assert_almost_equal(np.cbrt(x**3), x)
- assert_(np.isnan(np.cbrt(np.nan)))
- assert_equal(np.cbrt(np.inf), np.inf)
- assert_equal(np.cbrt(-np.inf), -np.inf)
- class TestPower:
- def test_power_float(self):
- x = np.array([1., 2., 3.])
- assert_equal(x**0, [1., 1., 1.])
- assert_equal(x**1, x)
- assert_equal(x**2, [1., 4., 9.])
- y = x.copy()
- y **= 2
- assert_equal(y, [1., 4., 9.])
- assert_almost_equal(x**(-1), [1., 0.5, 1./3])
- assert_almost_equal(x**(0.5), [1., ncu.sqrt(2), ncu.sqrt(3)])
- for out, inp, msg in _gen_alignment_data(dtype=np.float32,
- type='unary',
- max_size=11):
- exp = [ncu.sqrt(i) for i in inp]
- assert_almost_equal(inp**(0.5), exp, err_msg=msg)
- np.sqrt(inp, out=out)
- assert_equal(out, exp, err_msg=msg)
- for out, inp, msg in _gen_alignment_data(dtype=np.float64,
- type='unary',
- max_size=7):
- exp = [ncu.sqrt(i) for i in inp]
- assert_almost_equal(inp**(0.5), exp, err_msg=msg)
- np.sqrt(inp, out=out)
- assert_equal(out, exp, err_msg=msg)
- def test_power_complex(self):
- x = np.array([1+2j, 2+3j, 3+4j])
- assert_equal(x**0, [1., 1., 1.])
- assert_equal(x**1, x)
- assert_almost_equal(x**2, [-3+4j, -5+12j, -7+24j])
- assert_almost_equal(x**3, [(1+2j)**3, (2+3j)**3, (3+4j)**3])
- assert_almost_equal(x**4, [(1+2j)**4, (2+3j)**4, (3+4j)**4])
- assert_almost_equal(x**(-1), [1/(1+2j), 1/(2+3j), 1/(3+4j)])
- assert_almost_equal(x**(-2), [1/(1+2j)**2, 1/(2+3j)**2, 1/(3+4j)**2])
- assert_almost_equal(x**(-3), [(-11+2j)/125, (-46-9j)/2197,
- (-117-44j)/15625])
- assert_almost_equal(x**(0.5), [ncu.sqrt(1+2j), ncu.sqrt(2+3j),
- ncu.sqrt(3+4j)])
- norm = 1./((x**14)[0])
- assert_almost_equal(x**14 * norm,
- [i * norm for i in [-76443+16124j, 23161315+58317492j,
- 5583548873 + 2465133864j]])
- # Ticket #836
- def assert_complex_equal(x, y):
- assert_array_equal(x.real, y.real)
- assert_array_equal(x.imag, y.imag)
- for z in [complex(0, np.inf), complex(1, np.inf)]:
- z = np.array([z], dtype=np.complex_)
- with np.errstate(invalid="ignore"):
- assert_complex_equal(z**1, z)
- assert_complex_equal(z**2, z*z)
- assert_complex_equal(z**3, z*z*z)
- def test_power_zero(self):
- # ticket #1271
- zero = np.array([0j])
- one = np.array([1+0j])
- cnan = np.array([complex(np.nan, np.nan)])
- # FIXME cinf not tested.
- #cinf = np.array([complex(np.inf, 0)])
- def assert_complex_equal(x, y):
- x, y = np.asarray(x), np.asarray(y)
- assert_array_equal(x.real, y.real)
- assert_array_equal(x.imag, y.imag)
- # positive powers
- for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]:
- assert_complex_equal(np.power(zero, p), zero)
- # zero power
- assert_complex_equal(np.power(zero, 0), one)
- with np.errstate(invalid="ignore"):
- assert_complex_equal(np.power(zero, 0+1j), cnan)
- # negative power
- for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]:
- assert_complex_equal(np.power(zero, -p), cnan)
- assert_complex_equal(np.power(zero, -1+0.2j), cnan)
- def test_fast_power(self):
- x = np.array([1, 2, 3], np.int16)
- res = x**2.0
- assert_((x**2.00001).dtype is res.dtype)
- assert_array_equal(res, [1, 4, 9])
- # check the inplace operation on the casted copy doesn't mess with x
- assert_(not np.may_share_memory(res, x))
- assert_array_equal(x, [1, 2, 3])
- # Check that the fast path ignores 1-element not 0-d arrays
- res = x ** np.array([[[2]]])
- assert_equal(res.shape, (1, 1, 3))
- def test_integer_power(self):
- a = np.array([15, 15], 'i8')
- b = np.power(a, a)
- assert_equal(b, [437893890380859375, 437893890380859375])
- def test_integer_power_with_integer_zero_exponent(self):
- dtypes = np.typecodes['Integer']
- for dt in dtypes:
- arr = np.arange(-10, 10, dtype=dt)
- assert_equal(np.power(arr, 0), np.ones_like(arr))
- dtypes = np.typecodes['UnsignedInteger']
- for dt in dtypes:
- arr = np.arange(10, dtype=dt)
- assert_equal(np.power(arr, 0), np.ones_like(arr))
- def test_integer_power_of_1(self):
- dtypes = np.typecodes['AllInteger']
- for dt in dtypes:
- arr = np.arange(10, dtype=dt)
- assert_equal(np.power(1, arr), np.ones_like(arr))
- def test_integer_power_of_zero(self):
- dtypes = np.typecodes['AllInteger']
- for dt in dtypes:
- arr = np.arange(1, 10, dtype=dt)
- assert_equal(np.power(0, arr), np.zeros_like(arr))
- def test_integer_to_negative_power(self):
- dtypes = np.typecodes['Integer']
- for dt in dtypes:
- a = np.array([0, 1, 2, 3], dtype=dt)
- b = np.array([0, 1, 2, -3], dtype=dt)
- one = np.array(1, dtype=dt)
- minusone = np.array(-1, dtype=dt)
- assert_raises(ValueError, np.power, a, b)
- assert_raises(ValueError, np.power, a, minusone)
- assert_raises(ValueError, np.power, one, b)
- assert_raises(ValueError, np.power, one, minusone)
- def test_float_to_inf_power(self):
- for dt in [np.float32, np.float64]:
- a = np.array([1, 1, 2, 2, -2, -2, np.inf, -np.inf], dt)
- b = np.array([np.inf, -np.inf, np.inf, -np.inf,
- np.inf, -np.inf, np.inf, -np.inf], dt)
- r = np.array([1, 1, np.inf, 0, np.inf, 0, np.inf, 0], dt)
- assert_equal(np.power(a, b), r)
- class TestFloat_power:
- def test_type_conversion(self):
- arg_type = '?bhilBHILefdgFDG'
- res_type = 'ddddddddddddgDDG'
- for dtin, dtout in zip(arg_type, res_type):
- msg = "dtin: %s, dtout: %s" % (dtin, dtout)
- arg = np.ones(1, dtype=dtin)
- res = np.float_power(arg, arg)
- assert_(res.dtype.name == np.dtype(dtout).name, msg)
- class TestLog2:
- @pytest.mark.parametrize('dt', ['f', 'd', 'g'])
- def test_log2_values(self, dt):
- x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
- y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- xf = np.array(x, dtype=dt)
- yf = np.array(y, dtype=dt)
- assert_almost_equal(np.log2(xf), yf)
- @pytest.mark.parametrize("i", range(1, 65))
- def test_log2_ints(self, i):
- # a good log2 implementation should provide this,
- # might fail on OS with bad libm
- v = np.log2(2.**i)
- assert_equal(v, float(i), err_msg='at exponent %d' % i)
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- def test_log2_special(self):
- assert_equal(np.log2(1.), 0.)
- assert_equal(np.log2(np.inf), np.inf)
- assert_(np.isnan(np.log2(np.nan)))
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_(np.isnan(np.log2(-1.)))
- assert_(np.isnan(np.log2(-np.inf)))
- assert_equal(np.log2(0.), -np.inf)
- assert_(w[0].category is RuntimeWarning)
- assert_(w[1].category is RuntimeWarning)
- assert_(w[2].category is RuntimeWarning)
- class TestExp2:
- def test_exp2_values(self):
- x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
- y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- for dt in ['f', 'd', 'g']:
- xf = np.array(x, dtype=dt)
- yf = np.array(y, dtype=dt)
- assert_almost_equal(np.exp2(yf), xf)
- class TestLogAddExp2(_FilterInvalids):
- # Need test for intermediate precisions
- def test_logaddexp2_values(self):
- x = [1, 2, 3, 4, 5]
- y = [5, 4, 3, 2, 1]
- z = [6, 6, 6, 6, 6]
- for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]):
- xf = np.log2(np.array(x, dtype=dt))
- yf = np.log2(np.array(y, dtype=dt))
- zf = np.log2(np.array(z, dtype=dt))
- assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec_)
- def test_logaddexp2_range(self):
- x = [1000000, -1000000, 1000200, -1000200]
- y = [1000200, -1000200, 1000000, -1000000]
- z = [1000200, -1000000, 1000200, -1000000]
- for dt in ['f', 'd', 'g']:
- logxf = np.array(x, dtype=dt)
- logyf = np.array(y, dtype=dt)
- logzf = np.array(z, dtype=dt)
- assert_almost_equal(np.logaddexp2(logxf, logyf), logzf)
- def test_inf(self):
- inf = np.inf
- x = [inf, -inf, inf, -inf, inf, 1, -inf, 1]
- y = [inf, inf, -inf, -inf, 1, inf, 1, -inf]
- z = [inf, inf, inf, -inf, inf, inf, 1, 1]
- with np.errstate(invalid='raise'):
- for dt in ['f', 'd', 'g']:
- logxf = np.array(x, dtype=dt)
- logyf = np.array(y, dtype=dt)
- logzf = np.array(z, dtype=dt)
- assert_equal(np.logaddexp2(logxf, logyf), logzf)
- def test_nan(self):
- assert_(np.isnan(np.logaddexp2(np.nan, np.inf)))
- assert_(np.isnan(np.logaddexp2(np.inf, np.nan)))
- assert_(np.isnan(np.logaddexp2(np.nan, 0)))
- assert_(np.isnan(np.logaddexp2(0, np.nan)))
- assert_(np.isnan(np.logaddexp2(np.nan, np.nan)))
- def test_reduce(self):
- assert_equal(np.logaddexp2.identity, -np.inf)
- assert_equal(np.logaddexp2.reduce([]), -np.inf)
- assert_equal(np.logaddexp2.reduce([-np.inf]), -np.inf)
- assert_equal(np.logaddexp2.reduce([-np.inf, 0]), 0)
- class TestLog:
- def test_log_values(self):
- x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
- y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- for dt in ['f', 'd', 'g']:
- log2_ = 0.69314718055994530943
- xf = np.array(x, dtype=dt)
- yf = np.array(y, dtype=dt)*log2_
- assert_almost_equal(np.log(xf), yf)
- # test aliasing(issue #17761)
- x = np.array([2, 0.937500, 3, 0.947500, 1.054697])
- xf = np.log(x)
- assert_almost_equal(np.log(x, out=x), xf)
- # test log() of max for dtype does not raise
- for dt in ['f', 'd', 'g']:
- with np.errstate(all='raise'):
- x = np.finfo(dt).max
- np.log(x)
- def test_log_strides(self):
- np.random.seed(42)
- strides = np.array([-4,-3,-2,-1,1,2,3,4])
- sizes = np.arange(2,100)
- for ii in sizes:
- x_f64 = np.float64(np.random.uniform(low=0.01, high=100.0,size=ii))
- x_special = x_f64.copy()
- x_special[3:-1:4] = 1.0
- y_true = np.log(x_f64)
- y_special = np.log(x_special)
- for jj in strides:
- assert_array_almost_equal_nulp(np.log(x_f64[::jj]), y_true[::jj], nulp=2)
- assert_array_almost_equal_nulp(np.log(x_special[::jj]), y_special[::jj], nulp=2)
- class TestExp:
- def test_exp_values(self):
- x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
- y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- for dt in ['f', 'd', 'g']:
- log2_ = 0.69314718055994530943
- xf = np.array(x, dtype=dt)
- yf = np.array(y, dtype=dt)*log2_
- assert_almost_equal(np.exp(yf), xf)
- def test_exp_strides(self):
- np.random.seed(42)
- strides = np.array([-4,-3,-2,-1,1,2,3,4])
- sizes = np.arange(2,100)
- for ii in sizes:
- x_f64 = np.float64(np.random.uniform(low=0.01, high=709.1,size=ii))
- y_true = np.exp(x_f64)
- for jj in strides:
- assert_array_almost_equal_nulp(np.exp(x_f64[::jj]), y_true[::jj], nulp=2)
- class TestSpecialFloats:
- def test_exp_values(self):
- with np.errstate(under='raise', over='raise'):
- x = [np.nan, np.nan, np.inf, 0.]
- y = [np.nan, -np.nan, np.inf, -np.inf]
- for dt in ['e', 'f', 'd', 'g']:
- xf = np.array(x, dtype=dt)
- yf = np.array(y, dtype=dt)
- assert_equal(np.exp(yf), xf)
- # See: https://github.com/numpy/numpy/issues/19192
- @pytest.mark.xfail(
- _glibc_older_than("2.17"),
- reason="Older glibc versions may not raise appropriate FP exceptions"
- )
- def test_exp_exceptions(self):
- with np.errstate(over='raise'):
- assert_raises(FloatingPointError, np.exp, np.float16(11.0899))
- assert_raises(FloatingPointError, np.exp, np.float32(100.))
- assert_raises(FloatingPointError, np.exp, np.float32(1E19))
- assert_raises(FloatingPointError, np.exp, np.float64(800.))
- assert_raises(FloatingPointError, np.exp, np.float64(1E19))
- with np.errstate(under='raise'):
- assert_raises(FloatingPointError, np.exp, np.float16(-17.5))
- assert_raises(FloatingPointError, np.exp, np.float32(-1000.))
- assert_raises(FloatingPointError, np.exp, np.float32(-1E19))
- assert_raises(FloatingPointError, np.exp, np.float64(-1000.))
- assert_raises(FloatingPointError, np.exp, np.float64(-1E19))
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- def test_log_values(self):
- with np.errstate(all='ignore'):
- x = [np.nan, np.nan, np.inf, np.nan, -np.inf, np.nan]
- y = [np.nan, -np.nan, np.inf, -np.inf, 0.0, -1.0]
- y1p = [np.nan, -np.nan, np.inf, -np.inf, -1.0, -2.0]
- for dt in ['e', 'f', 'd', 'g']:
- xf = np.array(x, dtype=dt)
- yf = np.array(y, dtype=dt)
- yf1p = np.array(y1p, dtype=dt)
- assert_equal(np.log(yf), xf)
- assert_equal(np.log2(yf), xf)
- assert_equal(np.log10(yf), xf)
- assert_equal(np.log1p(yf1p), xf)
- with np.errstate(divide='raise'):
- for dt in ['e', 'f', 'd']:
- assert_raises(FloatingPointError, np.log,
- np.array(0.0, dtype=dt))
- assert_raises(FloatingPointError, np.log2,
- np.array(0.0, dtype=dt))
- assert_raises(FloatingPointError, np.log10,
- np.array(0.0, dtype=dt))
- assert_raises(FloatingPointError, np.log1p,
- np.array(-1.0, dtype=dt))
- with np.errstate(invalid='raise'):
- for dt in ['e', 'f', 'd']:
- assert_raises(FloatingPointError, np.log,
- np.array(-np.inf, dtype=dt))
- assert_raises(FloatingPointError, np.log,
- np.array(-1.0, dtype=dt))
- assert_raises(FloatingPointError, np.log2,
- np.array(-np.inf, dtype=dt))
- assert_raises(FloatingPointError, np.log2,
- np.array(-1.0, dtype=dt))
- assert_raises(FloatingPointError, np.log10,
- np.array(-np.inf, dtype=dt))
- assert_raises(FloatingPointError, np.log10,
- np.array(-1.0, dtype=dt))
- assert_raises(FloatingPointError, np.log1p,
- np.array(-np.inf, dtype=dt))
- assert_raises(FloatingPointError, np.log1p,
- np.array(-2.0, dtype=dt))
- # See https://github.com/numpy/numpy/issues/18005
- with assert_no_warnings():
- a = np.array(1e9, dtype='float32')
- np.log(a)
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- def test_sincos_values(self):
- with np.errstate(all='ignore'):
- x = [np.nan, np.nan, np.nan, np.nan]
- y = [np.nan, -np.nan, np.inf, -np.inf]
- for dt in ['e', 'f', 'd', 'g']:
- xf = np.array(x, dtype=dt)
- yf = np.array(y, dtype=dt)
- assert_equal(np.sin(yf), xf)
- assert_equal(np.cos(yf), xf)
- with np.errstate(invalid='raise'):
- for callable in [np.sin, np.cos]:
- for value in [np.inf, -np.inf]:
- for dt in ['e', 'f', 'd']:
- assert_raises(FloatingPointError, callable,
- np.array([value], dtype=dt))
- @pytest.mark.parametrize('dt', ['e', 'f', 'd', 'g'])
- def test_sqrt_values(self, dt):
- with np.errstate(all='ignore'):
- x = [np.nan, np.nan, np.inf, np.nan, 0.]
- y = [np.nan, -np.nan, np.inf, -np.inf, 0.]
- xf = np.array(x, dtype=dt)
- yf = np.array(y, dtype=dt)
- assert_equal(np.sqrt(yf), xf)
- # with np.errstate(invalid='raise'):
- # assert_raises(
- # FloatingPointError, np.sqrt, np.array(-100., dtype=dt)
- # )
- def test_abs_values(self):
- x = [np.nan, np.nan, np.inf, np.inf, 0., 0., 1.0, 1.0]
- y = [np.nan, -np.nan, np.inf, -np.inf, 0., -0., -1.0, 1.0]
- for dt in ['e', 'f', 'd', 'g']:
- xf = np.array(x, dtype=dt)
- yf = np.array(y, dtype=dt)
- assert_equal(np.abs(yf), xf)
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- def test_square_values(self):
- x = [np.nan, np.nan, np.inf, np.inf]
- y = [np.nan, -np.nan, np.inf, -np.inf]
- with np.errstate(all='ignore'):
- for dt in ['e', 'f', 'd', 'g']:
- xf = np.array(x, dtype=dt)
- yf = np.array(y, dtype=dt)
- assert_equal(np.square(yf), xf)
- with np.errstate(over='raise'):
- assert_raises(FloatingPointError, np.square,
- np.array(1E3, dtype='e'))
- assert_raises(FloatingPointError, np.square,
- np.array(1E32, dtype='f'))
- assert_raises(FloatingPointError, np.square,
- np.array(1E200, dtype='d'))
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- def test_reciprocal_values(self):
- with np.errstate(all='ignore'):
- x = [np.nan, np.nan, 0.0, -0.0, np.inf, -np.inf]
- y = [np.nan, -np.nan, np.inf, -np.inf, 0., -0.]
- for dt in ['e', 'f', 'd', 'g']:
- xf = np.array(x, dtype=dt)
- yf = np.array(y, dtype=dt)
- assert_equal(np.reciprocal(yf), xf)
- with np.errstate(divide='raise'):
- for dt in ['e', 'f', 'd', 'g']:
- assert_raises(FloatingPointError, np.reciprocal,
- np.array(-0.0, dtype=dt))
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- def test_tan(self):
- with np.errstate(all='ignore'):
- in_ = [np.nan, -np.nan, 0.0, -0.0, np.inf, -np.inf]
- out = [np.nan, np.nan, 0.0, -0.0, np.nan, np.nan]
- for dt in ['e', 'f', 'd']:
- in_arr = np.array(in_, dtype=dt)
- out_arr = np.array(out, dtype=dt)
- assert_equal(np.tan(in_arr), out_arr)
- with np.errstate(invalid='raise'):
- for dt in ['e', 'f', 'd']:
- assert_raises(FloatingPointError, np.tan,
- np.array(np.inf, dtype=dt))
- assert_raises(FloatingPointError, np.tan,
- np.array(-np.inf, dtype=dt))
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- def test_arcsincos(self):
- with np.errstate(all='ignore'):
- in_ = [np.nan, -np.nan, np.inf, -np.inf]
- out = [np.nan, np.nan, np.nan, np.nan]
- for dt in ['e', 'f', 'd']:
- in_arr = np.array(in_, dtype=dt)
- out_arr = np.array(out, dtype=dt)
- assert_equal(np.arcsin(in_arr), out_arr)
- assert_equal(np.arccos(in_arr), out_arr)
- for callable in [np.arcsin, np.arccos]:
- for value in [np.inf, -np.inf, 2.0, -2.0]:
- for dt in ['e', 'f', 'd']:
- with np.errstate(invalid='raise'):
- assert_raises(FloatingPointError, callable,
- np.array(value, dtype=dt))
- def test_arctan(self):
- with np.errstate(all='ignore'):
- in_ = [np.nan, -np.nan]
- out = [np.nan, np.nan]
- for dt in ['e', 'f', 'd']:
- in_arr = np.array(in_, dtype=dt)
- out_arr = np.array(out, dtype=dt)
- assert_equal(np.arctan(in_arr), out_arr)
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- def test_sinh(self):
- in_ = [np.nan, -np.nan, np.inf, -np.inf]
- out = [np.nan, np.nan, np.inf, -np.inf]
- for dt in ['e', 'f', 'd']:
- in_arr = np.array(in_, dtype=dt)
- out_arr = np.array(out, dtype=dt)
- assert_equal(np.sinh(in_arr), out_arr)
- with np.errstate(over='raise'):
- assert_raises(FloatingPointError, np.sinh,
- np.array(12.0, dtype='e'))
- assert_raises(FloatingPointError, np.sinh,
- np.array(120.0, dtype='f'))
- assert_raises(FloatingPointError, np.sinh,
- np.array(1200.0, dtype='d'))
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- def test_cosh(self):
- in_ = [np.nan, -np.nan, np.inf, -np.inf]
- out = [np.nan, np.nan, np.inf, np.inf]
- for dt in ['e', 'f', 'd']:
- in_arr = np.array(in_, dtype=dt)
- out_arr = np.array(out, dtype=dt)
- assert_equal(np.cosh(in_arr), out_arr)
- with np.errstate(over='raise'):
- assert_raises(FloatingPointError, np.cosh,
- np.array(12.0, dtype='e'))
- assert_raises(FloatingPointError, np.cosh,
- np.array(120.0, dtype='f'))
- assert_raises(FloatingPointError, np.cosh,
- np.array(1200.0, dtype='d'))
- def test_tanh(self):
- in_ = [np.nan, -np.nan, np.inf, -np.inf]
- out = [np.nan, np.nan, 1.0, -1.0]
- for dt in ['e', 'f', 'd']:
- in_arr = np.array(in_, dtype=dt)
- out_arr = np.array(out, dtype=dt)
- assert_equal(np.tanh(in_arr), out_arr)
- def test_arcsinh(self):
- in_ = [np.nan, -np.nan, np.inf, -np.inf]
- out = [np.nan, np.nan, np.inf, -np.inf]
- for dt in ['e', 'f', 'd']:
- in_arr = np.array(in_, dtype=dt)
- out_arr = np.array(out, dtype=dt)
- assert_equal(np.arcsinh(in_arr), out_arr)
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- def test_arccosh(self):
- with np.errstate(all='ignore'):
- in_ = [np.nan, -np.nan, np.inf, -np.inf, 1.0, 0.0]
- out = [np.nan, np.nan, np.inf, np.nan, 0.0, np.nan]
- for dt in ['e', 'f', 'd']:
- in_arr = np.array(in_, dtype=dt)
- out_arr = np.array(out, dtype=dt)
- assert_equal(np.arccosh(in_arr), out_arr)
- for value in [0.0, -np.inf]:
- with np.errstate(invalid='raise'):
- for dt in ['e', 'f', 'd']:
- assert_raises(FloatingPointError, np.arccosh,
- np.array(value, dtype=dt))
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- def test_arctanh(self):
- with np.errstate(all='ignore'):
- in_ = [np.nan, -np.nan, np.inf, -np.inf, 1.0, -1.0, 2.0]
- out = [np.nan, np.nan, np.nan, np.nan, np.inf, -np.inf, np.nan]
- for dt in ['e', 'f', 'd']:
- in_arr = np.array(in_, dtype=dt)
- out_arr = np.array(out, dtype=dt)
- assert_equal(np.arctanh(in_arr), out_arr)
- for value in [1.01, np.inf, -np.inf, 1.0, -1.0]:
- with np.errstate(invalid='raise', divide='raise'):
- for dt in ['e', 'f', 'd']:
- assert_raises(FloatingPointError, np.arctanh,
- np.array(value, dtype=dt))
- # See: https://github.com/numpy/numpy/issues/20448
- @pytest.mark.xfail(
- _glibc_older_than("2.17"),
- reason="Older glibc versions may not raise appropriate FP exceptions"
- )
- def test_exp2(self):
- with np.errstate(all='ignore'):
- in_ = [np.nan, -np.nan, np.inf, -np.inf]
- out = [np.nan, np.nan, np.inf, 0.0]
- for dt in ['e', 'f', 'd']:
- in_arr = np.array(in_, dtype=dt)
- out_arr = np.array(out, dtype=dt)
- assert_equal(np.exp2(in_arr), out_arr)
- for value in [2000.0, -2000.0]:
- with np.errstate(over='raise', under='raise'):
- for dt in ['e', 'f', 'd']:
- assert_raises(FloatingPointError, np.exp2,
- np.array(value, dtype=dt))
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
- def test_expm1(self):
- with np.errstate(all='ignore'):
- in_ = [np.nan, -np.nan, np.inf, -np.inf]
- out = [np.nan, np.nan, np.inf, -1.0]
- for dt in ['e', 'f', 'd']:
- in_arr = np.array(in_, dtype=dt)
- out_arr = np.array(out, dtype=dt)
- assert_equal(np.expm1(in_arr), out_arr)
- for value in [200.0, 2000.0]:
- with np.errstate(over='raise'):
- for dt in ['e', 'f']:
- assert_raises(FloatingPointError, np.expm1,
- np.array(value, dtype=dt))
- # test to ensure no spurious FP exceptions are raised due to SIMD
- INF_INVALID_ERR = [
- np.cos, np.sin, np.tan, np.arccos, np.arcsin, np.spacing, np.arctanh
- ]
- NEG_INVALID_ERR = [
- np.log, np.log2, np.log10, np.log1p, np.sqrt, np.arccosh,
- np.arctanh
- ]
- ONE_INVALID_ERR = [
- np.arctanh,
- ]
- LTONE_INVALID_ERR = [
- np.arccosh,
- ]
- BYZERO_ERR = [
- np.log, np.log2, np.log10, np.reciprocal, np.arccosh
- ]
- @pytest.mark.parametrize("ufunc", UFUNCS_UNARY_FP)
- @pytest.mark.parametrize("dtype", ('e', 'f', 'd'))
- @pytest.mark.parametrize("data, escape", (
- ([0.03], LTONE_INVALID_ERR),
- ([0.03]*32, LTONE_INVALID_ERR),
- # neg
- ([-1.0], NEG_INVALID_ERR),
- ([-1.0]*32, NEG_INVALID_ERR),
- # flat
- ([1.0], ONE_INVALID_ERR),
- ([1.0]*32, ONE_INVALID_ERR),
- # zero
- ([0.0], BYZERO_ERR),
- ([0.0]*32, BYZERO_ERR),
- ([-0.0], BYZERO_ERR),
- ([-0.0]*32, BYZERO_ERR),
- # nan
- ([0.5, 0.5, 0.5, np.nan], LTONE_INVALID_ERR),
- ([0.5, 0.5, 0.5, np.nan]*32, LTONE_INVALID_ERR),
- ([np.nan, 1.0, 1.0, 1.0], ONE_INVALID_ERR),
- ([np.nan, 1.0, 1.0, 1.0]*32, ONE_INVALID_ERR),
- ([np.nan], []),
- ([np.nan]*32, []),
- # inf
- ([0.5, 0.5, 0.5, np.inf], INF_INVALID_ERR + LTONE_INVALID_ERR),
- ([0.5, 0.5, 0.5, np.inf]*32, INF_INVALID_ERR + LTONE_INVALID_ERR),
- ([np.inf, 1.0, 1.0, 1.0], INF_INVALID_ERR),
- ([np.inf, 1.0, 1.0, 1.0]*32, INF_INVALID_ERR),
- ([np.inf], INF_INVALID_ERR),
- ([np.inf]*32, INF_INVALID_ERR),
- # ninf
- ([0.5, 0.5, 0.5, -np.inf],
- NEG_INVALID_ERR + INF_INVALID_ERR + LTONE_INVALID_ERR),
- ([0.5, 0.5, 0.5, -np.inf]*32,
- NEG_INVALID_ERR + INF_INVALID_ERR + LTONE_INVALID_ERR),
- ([-np.inf, 1.0, 1.0, 1.0], NEG_INVALID_ERR + INF_INVALID_ERR),
- ([-np.inf, 1.0, 1.0, 1.0]*32, NEG_INVALID_ERR + INF_INVALID_ERR),
- ([-np.inf], NEG_INVALID_ERR + INF_INVALID_ERR),
- ([-np.inf]*32, NEG_INVALID_ERR + INF_INVALID_ERR),
- ))
- def test_unary_spurious_fpexception(self, ufunc, dtype, data, escape):
- if escape and ufunc in escape:
- return
- # FIXME: NAN raises FP invalid exception:
- # - ceil/float16 on MSVC:32-bit
- # - spacing/float16 on almost all platforms
- if ufunc in (np.spacing, np.ceil) and dtype == 'e':
- return
- array = np.array(data, dtype=dtype)
- with assert_no_warnings():
- ufunc(array)
- class TestFPClass:
- @pytest.mark.parametrize("stride", [-4,-2,-1,1,2,4])
- def test_fpclass(self, stride):
- arr_f64 = np.array([np.nan, -np.nan, np.inf, -np.inf, -1.0, 1.0, -0.0, 0.0, 2.2251e-308, -2.2251e-308], dtype='d')
- arr_f32 = np.array([np.nan, -np.nan, np.inf, -np.inf, -1.0, 1.0, -0.0, 0.0, 1.4013e-045, -1.4013e-045], dtype='f')
- nan = np.array([True, True, False, False, False, False, False, False, False, False])
- inf = np.array([False, False, True, True, False, False, False, False, False, False])
- sign = np.array([False, True, False, True, True, False, True, False, False, True])
- finite = np.array([False, False, False, False, True, True, True, True, True, True])
- assert_equal(np.isnan(arr_f32[::stride]), nan[::stride])
- assert_equal(np.isnan(arr_f64[::stride]), nan[::stride])
- assert_equal(np.isinf(arr_f32[::stride]), inf[::stride])
- assert_equal(np.isinf(arr_f64[::stride]), inf[::stride])
- assert_equal(np.signbit(arr_f32[::stride]), sign[::stride])
- assert_equal(np.signbit(arr_f64[::stride]), sign[::stride])
- assert_equal(np.isfinite(arr_f32[::stride]), finite[::stride])
- assert_equal(np.isfinite(arr_f64[::stride]), finite[::stride])
- class TestLDExp:
- @pytest.mark.parametrize("stride", [-4,-2,-1,1,2,4])
- @pytest.mark.parametrize("dtype", ['f', 'd'])
- def test_ldexp(self, dtype, stride):
- mant = np.array([0.125, 0.25, 0.5, 1., 1., 2., 4., 8.], dtype=dtype)
- exp = np.array([3, 2, 1, 0, 0, -1, -2, -3], dtype='i')
- out = np.zeros(8, dtype=dtype)
- assert_equal(np.ldexp(mant[::stride], exp[::stride], out=out[::stride]), np.ones(8, dtype=dtype)[::stride])
- assert_equal(out[::stride], np.ones(8, dtype=dtype)[::stride])
- class TestFRExp:
- @pytest.mark.parametrize("stride", [-4,-2,-1,1,2,4])
- @pytest.mark.parametrize("dtype", ['f', 'd'])
- @pytest.mark.skipif(not sys.platform.startswith('linux'),
- reason="np.frexp gives different answers for NAN/INF on windows and linux")
- def test_frexp(self, dtype, stride):
- arr = np.array([np.nan, np.nan, np.inf, -np.inf, 0.0, -0.0, 1.0, -1.0], dtype=dtype)
- mant_true = np.array([np.nan, np.nan, np.inf, -np.inf, 0.0, -0.0, 0.5, -0.5], dtype=dtype)
- exp_true = np.array([0, 0, 0, 0, 0, 0, 1, 1], dtype='i')
- out_mant = np.ones(8, dtype=dtype)
- out_exp = 2*np.ones(8, dtype='i')
- mant, exp = np.frexp(arr[::stride], out=(out_mant[::stride], out_exp[::stride]))
- assert_equal(mant_true[::stride], mant)
- assert_equal(exp_true[::stride], exp)
- assert_equal(out_mant[::stride], mant_true[::stride])
- assert_equal(out_exp[::stride], exp_true[::stride])
- # func : [maxulperror, low, high]
- avx_ufuncs = {'sqrt' :[1, 0., 100.],
- 'absolute' :[0, -100., 100.],
- 'reciprocal' :[1, 1., 100.],
- 'square' :[1, -100., 100.],
- 'rint' :[0, -100., 100.],
- 'floor' :[0, -100., 100.],
- 'ceil' :[0, -100., 100.],
- 'trunc' :[0, -100., 100.]}
- class TestAVXUfuncs:
- def test_avx_based_ufunc(self):
- strides = np.array([-4,-3,-2,-1,1,2,3,4])
- np.random.seed(42)
- for func, prop in avx_ufuncs.items():
- maxulperr = prop[0]
- minval = prop[1]
- maxval = prop[2]
- # various array sizes to ensure masking in AVX is tested
- for size in range(1,32):
- myfunc = getattr(np, func)
- x_f32 = np.float32(np.random.uniform(low=minval, high=maxval,
- size=size))
- x_f64 = np.float64(x_f32)
- x_f128 = np.longdouble(x_f32)
- y_true128 = myfunc(x_f128)
- if maxulperr == 0:
- assert_equal(myfunc(x_f32), np.float32(y_true128))
- assert_equal(myfunc(x_f64), np.float64(y_true128))
- else:
- assert_array_max_ulp(myfunc(x_f32), np.float32(y_true128),
- maxulp=maxulperr)
- assert_array_max_ulp(myfunc(x_f64), np.float64(y_true128),
- maxulp=maxulperr)
- # various strides to test gather instruction
- if size > 1:
- y_true32 = myfunc(x_f32)
- y_true64 = myfunc(x_f64)
- for jj in strides:
- assert_equal(myfunc(x_f64[::jj]), y_true64[::jj])
- assert_equal(myfunc(x_f32[::jj]), y_true32[::jj])
- class TestAVXFloat32Transcendental:
- def test_exp_float32(self):
- np.random.seed(42)
- x_f32 = np.float32(np.random.uniform(low=0.0,high=88.1,size=1000000))
- x_f64 = np.float64(x_f32)
- assert_array_max_ulp(np.exp(x_f32), np.float32(np.exp(x_f64)), maxulp=3)
- def test_log_float32(self):
- np.random.seed(42)
- x_f32 = np.float32(np.random.uniform(low=0.0,high=1000,size=1000000))
- x_f64 = np.float64(x_f32)
- assert_array_max_ulp(np.log(x_f32), np.float32(np.log(x_f64)), maxulp=4)
- def test_sincos_float32(self):
- np.random.seed(42)
- N = 1000000
- M = np.int_(N/20)
- index = np.random.randint(low=0, high=N, size=M)
- x_f32 = np.float32(np.random.uniform(low=-100.,high=100.,size=N))
- if not _glibc_older_than("2.17"):
- # test coverage for elements > 117435.992f for which glibc is used
- # this is known to be problematic on old glibc, so skip it there
- x_f32[index] = np.float32(10E+10*np.random.rand(M))
- x_f64 = np.float64(x_f32)
- assert_array_max_ulp(np.sin(x_f32), np.float32(np.sin(x_f64)), maxulp=2)
- assert_array_max_ulp(np.cos(x_f32), np.float32(np.cos(x_f64)), maxulp=2)
- # test aliasing(issue #17761)
- tx_f32 = x_f32.copy()
- assert_array_max_ulp(np.sin(x_f32, out=x_f32), np.float32(np.sin(x_f64)), maxulp=2)
- assert_array_max_ulp(np.cos(tx_f32, out=tx_f32), np.float32(np.cos(x_f64)), maxulp=2)
- def test_strided_float32(self):
- np.random.seed(42)
- strides = np.array([-4,-3,-2,-1,1,2,3,4])
- sizes = np.arange(2,100)
- for ii in sizes:
- x_f32 = np.float32(np.random.uniform(low=0.01,high=88.1,size=ii))
- x_f32_large = x_f32.copy()
- x_f32_large[3:-1:4] = 120000.0
- exp_true = np.exp(x_f32)
- log_true = np.log(x_f32)
- sin_true = np.sin(x_f32_large)
- cos_true = np.cos(x_f32_large)
- for jj in strides:
- assert_array_almost_equal_nulp(np.exp(x_f32[::jj]), exp_true[::jj], nulp=2)
- assert_array_almost_equal_nulp(np.log(x_f32[::jj]), log_true[::jj], nulp=2)
- assert_array_almost_equal_nulp(np.sin(x_f32_large[::jj]), sin_true[::jj], nulp=2)
- assert_array_almost_equal_nulp(np.cos(x_f32_large[::jj]), cos_true[::jj], nulp=2)
- class TestLogAddExp(_FilterInvalids):
- def test_logaddexp_values(self):
- x = [1, 2, 3, 4, 5]
- y = [5, 4, 3, 2, 1]
- z = [6, 6, 6, 6, 6]
- for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]):
- xf = np.log(np.array(x, dtype=dt))
- yf = np.log(np.array(y, dtype=dt))
- zf = np.log(np.array(z, dtype=dt))
- assert_almost_equal(np.logaddexp(xf, yf), zf, decimal=dec_)
- def test_logaddexp_range(self):
- x = [1000000, -1000000, 1000200, -1000200]
- y = [1000200, -1000200, 1000000, -1000000]
- z = [1000200, -1000000, 1000200, -1000000]
- for dt in ['f', 'd', 'g']:
- logxf = np.array(x, dtype=dt)
- logyf = np.array(y, dtype=dt)
- logzf = np.array(z, dtype=dt)
- assert_almost_equal(np.logaddexp(logxf, logyf), logzf)
- def test_inf(self):
- inf = np.inf
- x = [inf, -inf, inf, -inf, inf, 1, -inf, 1]
- y = [inf, inf, -inf, -inf, 1, inf, 1, -inf]
- z = [inf, inf, inf, -inf, inf, inf, 1, 1]
- with np.errstate(invalid='raise'):
- for dt in ['f', 'd', 'g']:
- logxf = np.array(x, dtype=dt)
- logyf = np.array(y, dtype=dt)
- logzf = np.array(z, dtype=dt)
- assert_equal(np.logaddexp(logxf, logyf), logzf)
- def test_nan(self):
- assert_(np.isnan(np.logaddexp(np.nan, np.inf)))
- assert_(np.isnan(np.logaddexp(np.inf, np.nan)))
- assert_(np.isnan(np.logaddexp(np.nan, 0)))
- assert_(np.isnan(np.logaddexp(0, np.nan)))
- assert_(np.isnan(np.logaddexp(np.nan, np.nan)))
- def test_reduce(self):
- assert_equal(np.logaddexp.identity, -np.inf)
- assert_equal(np.logaddexp.reduce([]), -np.inf)
- class TestLog1p:
- def test_log1p(self):
- assert_almost_equal(ncu.log1p(0.2), ncu.log(1.2))
- assert_almost_equal(ncu.log1p(1e-6), ncu.log(1+1e-6))
- def test_special(self):
- with np.errstate(invalid="ignore", divide="ignore"):
- assert_equal(ncu.log1p(np.nan), np.nan)
- assert_equal(ncu.log1p(np.inf), np.inf)
- assert_equal(ncu.log1p(-1.), -np.inf)
- assert_equal(ncu.log1p(-2.), np.nan)
- assert_equal(ncu.log1p(-np.inf), np.nan)
- class TestExpm1:
- def test_expm1(self):
- assert_almost_equal(ncu.expm1(0.2), ncu.exp(0.2)-1)
- assert_almost_equal(ncu.expm1(1e-6), ncu.exp(1e-6)-1)
- def test_special(self):
- assert_equal(ncu.expm1(np.inf), np.inf)
- assert_equal(ncu.expm1(0.), 0.)
- assert_equal(ncu.expm1(-0.), -0.)
- assert_equal(ncu.expm1(np.inf), np.inf)
- assert_equal(ncu.expm1(-np.inf), -1.)
- def test_complex(self):
- x = np.asarray(1e-12)
- assert_allclose(x, ncu.expm1(x))
- x = x.astype(np.complex128)
- assert_allclose(x, ncu.expm1(x))
- class TestHypot:
- def test_simple(self):
- assert_almost_equal(ncu.hypot(1, 1), ncu.sqrt(2))
- assert_almost_equal(ncu.hypot(0, 0), 0)
- def test_reduce(self):
- assert_almost_equal(ncu.hypot.reduce([3.0, 4.0]), 5.0)
- assert_almost_equal(ncu.hypot.reduce([3.0, 4.0, 0]), 5.0)
- assert_almost_equal(ncu.hypot.reduce([9.0, 12.0, 20.0]), 25.0)
- assert_equal(ncu.hypot.reduce([]), 0.0)
- def assert_hypot_isnan(x, y):
- with np.errstate(invalid='ignore'):
- assert_(np.isnan(ncu.hypot(x, y)),
- "hypot(%s, %s) is %s, not nan" % (x, y, ncu.hypot(x, y)))
- def assert_hypot_isinf(x, y):
- with np.errstate(invalid='ignore'):
- assert_(np.isinf(ncu.hypot(x, y)),
- "hypot(%s, %s) is %s, not inf" % (x, y, ncu.hypot(x, y)))
- class TestHypotSpecialValues:
- def test_nan_outputs(self):
- assert_hypot_isnan(np.nan, np.nan)
- assert_hypot_isnan(np.nan, 1)
- def test_nan_outputs2(self):
- assert_hypot_isinf(np.nan, np.inf)
- assert_hypot_isinf(np.inf, np.nan)
- assert_hypot_isinf(np.inf, 0)
- assert_hypot_isinf(0, np.inf)
- assert_hypot_isinf(np.inf, np.inf)
- assert_hypot_isinf(np.inf, 23.0)
- def test_no_fpe(self):
- assert_no_warnings(ncu.hypot, np.inf, 0)
- def assert_arctan2_isnan(x, y):
- assert_(np.isnan(ncu.arctan2(x, y)), "arctan(%s, %s) is %s, not nan" % (x, y, ncu.arctan2(x, y)))
- def assert_arctan2_ispinf(x, y):
- assert_((np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) > 0), "arctan(%s, %s) is %s, not +inf" % (x, y, ncu.arctan2(x, y)))
- def assert_arctan2_isninf(x, y):
- assert_((np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) < 0), "arctan(%s, %s) is %s, not -inf" % (x, y, ncu.arctan2(x, y)))
- def assert_arctan2_ispzero(x, y):
- assert_((ncu.arctan2(x, y) == 0 and not np.signbit(ncu.arctan2(x, y))), "arctan(%s, %s) is %s, not +0" % (x, y, ncu.arctan2(x, y)))
- def assert_arctan2_isnzero(x, y):
- assert_((ncu.arctan2(x, y) == 0 and np.signbit(ncu.arctan2(x, y))), "arctan(%s, %s) is %s, not -0" % (x, y, ncu.arctan2(x, y)))
- class TestArctan2SpecialValues:
- def test_one_one(self):
- # atan2(1, 1) returns pi/4.
- assert_almost_equal(ncu.arctan2(1, 1), 0.25 * np.pi)
- assert_almost_equal(ncu.arctan2(-1, 1), -0.25 * np.pi)
- assert_almost_equal(ncu.arctan2(1, -1), 0.75 * np.pi)
- def test_zero_nzero(self):
- # atan2(+-0, -0) returns +-pi.
- assert_almost_equal(ncu.arctan2(np.PZERO, np.NZERO), np.pi)
- assert_almost_equal(ncu.arctan2(np.NZERO, np.NZERO), -np.pi)
- def test_zero_pzero(self):
- # atan2(+-0, +0) returns +-0.
- assert_arctan2_ispzero(np.PZERO, np.PZERO)
- assert_arctan2_isnzero(np.NZERO, np.PZERO)
- def test_zero_negative(self):
- # atan2(+-0, x) returns +-pi for x < 0.
- assert_almost_equal(ncu.arctan2(np.PZERO, -1), np.pi)
- assert_almost_equal(ncu.arctan2(np.NZERO, -1), -np.pi)
- def test_zero_positive(self):
- # atan2(+-0, x) returns +-0 for x > 0.
- assert_arctan2_ispzero(np.PZERO, 1)
- assert_arctan2_isnzero(np.NZERO, 1)
- def test_positive_zero(self):
- # atan2(y, +-0) returns +pi/2 for y > 0.
- assert_almost_equal(ncu.arctan2(1, np.PZERO), 0.5 * np.pi)
- assert_almost_equal(ncu.arctan2(1, np.NZERO), 0.5 * np.pi)
- def test_negative_zero(self):
- # atan2(y, +-0) returns -pi/2 for y < 0.
- assert_almost_equal(ncu.arctan2(-1, np.PZERO), -0.5 * np.pi)
- assert_almost_equal(ncu.arctan2(-1, np.NZERO), -0.5 * np.pi)
- def test_any_ninf(self):
- # atan2(+-y, -infinity) returns +-pi for finite y > 0.
- assert_almost_equal(ncu.arctan2(1, np.NINF), np.pi)
- assert_almost_equal(ncu.arctan2(-1, np.NINF), -np.pi)
- def test_any_pinf(self):
- # atan2(+-y, +infinity) returns +-0 for finite y > 0.
- assert_arctan2_ispzero(1, np.inf)
- assert_arctan2_isnzero(-1, np.inf)
- def test_inf_any(self):
- # atan2(+-infinity, x) returns +-pi/2 for finite x.
- assert_almost_equal(ncu.arctan2( np.inf, 1), 0.5 * np.pi)
- assert_almost_equal(ncu.arctan2(-np.inf, 1), -0.5 * np.pi)
- def test_inf_ninf(self):
- # atan2(+-infinity, -infinity) returns +-3*pi/4.
- assert_almost_equal(ncu.arctan2( np.inf, -np.inf), 0.75 * np.pi)
- assert_almost_equal(ncu.arctan2(-np.inf, -np.inf), -0.75 * np.pi)
- def test_inf_pinf(self):
- # atan2(+-infinity, +infinity) returns +-pi/4.
- assert_almost_equal(ncu.arctan2( np.inf, np.inf), 0.25 * np.pi)
- assert_almost_equal(ncu.arctan2(-np.inf, np.inf), -0.25 * np.pi)
- def test_nan_any(self):
- # atan2(nan, x) returns nan for any x, including inf
- assert_arctan2_isnan(np.nan, np.inf)
- assert_arctan2_isnan(np.inf, np.nan)
- assert_arctan2_isnan(np.nan, np.nan)
- class TestLdexp:
- def _check_ldexp(self, tp):
- assert_almost_equal(ncu.ldexp(np.array(2., np.float32),
- np.array(3, tp)), 16.)
- assert_almost_equal(ncu.ldexp(np.array(2., np.float64),
- np.array(3, tp)), 16.)
- assert_almost_equal(ncu.ldexp(np.array(2., np.longdouble),
- np.array(3, tp)), 16.)
- def test_ldexp(self):
- # The default Python int type should work
- assert_almost_equal(ncu.ldexp(2., 3), 16.)
- # The following int types should all be accepted
- self._check_ldexp(np.int8)
- self._check_ldexp(np.int16)
- self._check_ldexp(np.int32)
- self._check_ldexp('i')
- self._check_ldexp('l')
- def test_ldexp_overflow(self):
- # silence warning emitted on overflow
- with np.errstate(over="ignore"):
- imax = np.iinfo(np.dtype('l')).max
- imin = np.iinfo(np.dtype('l')).min
- assert_equal(ncu.ldexp(2., imax), np.inf)
- assert_equal(ncu.ldexp(2., imin), 0)
- class TestMaximum(_FilterInvalids):
- def test_reduce(self):
- dflt = np.typecodes['AllFloat']
- dint = np.typecodes['AllInteger']
- seq1 = np.arange(11)
- seq2 = seq1[::-1]
- func = np.maximum.reduce
- for dt in dint:
- tmp1 = seq1.astype(dt)
- tmp2 = seq2.astype(dt)
- assert_equal(func(tmp1), 10)
- assert_equal(func(tmp2), 10)
- for dt in dflt:
- tmp1 = seq1.astype(dt)
- tmp2 = seq2.astype(dt)
- assert_equal(func(tmp1), 10)
- assert_equal(func(tmp2), 10)
- tmp1[::2] = np.nan
- tmp2[::2] = np.nan
- assert_equal(func(tmp1), np.nan)
- assert_equal(func(tmp2), np.nan)
- def test_reduce_complex(self):
- assert_equal(np.maximum.reduce([1, 2j]), 1)
- assert_equal(np.maximum.reduce([1+3j, 2j]), 1+3j)
- def test_float_nans(self):
- nan = np.nan
- arg1 = np.array([0, nan, nan])
- arg2 = np.array([nan, 0, nan])
- out = np.array([nan, nan, nan])
- assert_equal(np.maximum(arg1, arg2), out)
- def test_object_nans(self):
- # Multiple checks to give this a chance to
- # fail if cmp is used instead of rich compare.
- # Failure cannot be guaranteed.
- for i in range(1):
- x = np.array(float('nan'), object)
- y = 1.0
- z = np.array(float('nan'), object)
- assert_(np.maximum(x, y) == 1.0)
- assert_(np.maximum(z, y) == 1.0)
- def test_complex_nans(self):
- nan = np.nan
- for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
- arg1 = np.array([0, cnan, cnan], dtype=complex)
- arg2 = np.array([cnan, 0, cnan], dtype=complex)
- out = np.array([nan, nan, nan], dtype=complex)
- assert_equal(np.maximum(arg1, arg2), out)
- def test_object_array(self):
- arg1 = np.arange(5, dtype=object)
- arg2 = arg1 + 1
- assert_equal(np.maximum(arg1, arg2), arg2)
- def test_strided_array(self):
- arr1 = np.array([-4.0, 1.0, 10.0, 0.0, np.nan, -np.nan, np.inf, -np.inf])
- arr2 = np.array([-2.0,-1.0, np.nan, 1.0, 0.0, np.nan, 1.0, -3.0])
- maxtrue = np.array([-2.0, 1.0, np.nan, 1.0, np.nan, np.nan, np.inf, -3.0])
- out = np.ones(8)
- out_maxtrue = np.array([-2.0, 1.0, 1.0, 10.0, 1.0, 1.0, np.nan, 1.0])
- assert_equal(np.maximum(arr1,arr2), maxtrue)
- assert_equal(np.maximum(arr1[::2],arr2[::2]), maxtrue[::2])
- assert_equal(np.maximum(arr1[:4:], arr2[::2]), np.array([-2.0, np.nan, 10.0, 1.0]))
- assert_equal(np.maximum(arr1[::3], arr2[:3:]), np.array([-2.0, 0.0, np.nan]))
- assert_equal(np.maximum(arr1[:6:2], arr2[::3], out=out[::3]), np.array([-2.0, 10., np.nan]))
- assert_equal(out, out_maxtrue)
- def test_precision(self):
- dtypes = [np.float16, np.float32, np.float64, np.longdouble]
- for dt in dtypes:
- dtmin = np.finfo(dt).min
- dtmax = np.finfo(dt).max
- d1 = dt(0.1)
- d1_next = np.nextafter(d1, np.inf)
- test_cases = [
- # v1 v2 expected
- (dtmin, -np.inf, dtmin),
- (dtmax, -np.inf, dtmax),
- (d1, d1_next, d1_next),
- (dtmax, np.nan, np.nan),
- ]
- for v1, v2, expected in test_cases:
- assert_equal(np.maximum([v1], [v2]), [expected])
- assert_equal(np.maximum.reduce([v1, v2]), expected)
- class TestMinimum(_FilterInvalids):
- def test_reduce(self):
- dflt = np.typecodes['AllFloat']
- dint = np.typecodes['AllInteger']
- seq1 = np.arange(11)
- seq2 = seq1[::-1]
- func = np.minimum.reduce
- for dt in dint:
- tmp1 = seq1.astype(dt)
- tmp2 = seq2.astype(dt)
- assert_equal(func(tmp1), 0)
- assert_equal(func(tmp2), 0)
- for dt in dflt:
- tmp1 = seq1.astype(dt)
- tmp2 = seq2.astype(dt)
- assert_equal(func(tmp1), 0)
- assert_equal(func(tmp2), 0)
- tmp1[::2] = np.nan
- tmp2[::2] = np.nan
- assert_equal(func(tmp1), np.nan)
- assert_equal(func(tmp2), np.nan)
- def test_reduce_complex(self):
- assert_equal(np.minimum.reduce([1, 2j]), 2j)
- assert_equal(np.minimum.reduce([1+3j, 2j]), 2j)
- def test_float_nans(self):
- nan = np.nan
- arg1 = np.array([0, nan, nan])
- arg2 = np.array([nan, 0, nan])
- out = np.array([nan, nan, nan])
- assert_equal(np.minimum(arg1, arg2), out)
- def test_object_nans(self):
- # Multiple checks to give this a chance to
- # fail if cmp is used instead of rich compare.
- # Failure cannot be guaranteed.
- for i in range(1):
- x = np.array(float('nan'), object)
- y = 1.0
- z = np.array(float('nan'), object)
- assert_(np.minimum(x, y) == 1.0)
- assert_(np.minimum(z, y) == 1.0)
- def test_complex_nans(self):
- nan = np.nan
- for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
- arg1 = np.array([0, cnan, cnan], dtype=complex)
- arg2 = np.array([cnan, 0, cnan], dtype=complex)
- out = np.array([nan, nan, nan], dtype=complex)
- assert_equal(np.minimum(arg1, arg2), out)
- def test_object_array(self):
- arg1 = np.arange(5, dtype=object)
- arg2 = arg1 + 1
- assert_equal(np.minimum(arg1, arg2), arg1)
- def test_strided_array(self):
- arr1 = np.array([-4.0, 1.0, 10.0, 0.0, np.nan, -np.nan, np.inf, -np.inf])
- arr2 = np.array([-2.0,-1.0, np.nan, 1.0, 0.0, np.nan, 1.0, -3.0])
- mintrue = np.array([-4.0, -1.0, np.nan, 0.0, np.nan, np.nan, 1.0, -np.inf])
- out = np.ones(8)
- out_mintrue = np.array([-4.0, 1.0, 1.0, 1.0, 1.0, 1.0, np.nan, 1.0])
- assert_equal(np.minimum(arr1,arr2), mintrue)
- assert_equal(np.minimum(arr1[::2],arr2[::2]), mintrue[::2])
- assert_equal(np.minimum(arr1[:4:], arr2[::2]), np.array([-4.0, np.nan, 0.0, 0.0]))
- assert_equal(np.minimum(arr1[::3], arr2[:3:]), np.array([-4.0, -1.0, np.nan]))
- assert_equal(np.minimum(arr1[:6:2], arr2[::3], out=out[::3]), np.array([-4.0, 1.0, np.nan]))
- assert_equal(out, out_mintrue)
- def test_precision(self):
- dtypes = [np.float16, np.float32, np.float64, np.longdouble]
- for dt in dtypes:
- dtmin = np.finfo(dt).min
- dtmax = np.finfo(dt).max
- d1 = dt(0.1)
- d1_next = np.nextafter(d1, np.inf)
- test_cases = [
- # v1 v2 expected
- (dtmin, np.inf, dtmin),
- (dtmax, np.inf, dtmax),
- (d1, d1_next, d1),
- (dtmin, np.nan, np.nan),
- ]
- for v1, v2, expected in test_cases:
- assert_equal(np.minimum([v1], [v2]), [expected])
- assert_equal(np.minimum.reduce([v1, v2]), expected)
- class TestFmax(_FilterInvalids):
- def test_reduce(self):
- dflt = np.typecodes['AllFloat']
- dint = np.typecodes['AllInteger']
- seq1 = np.arange(11)
- seq2 = seq1[::-1]
- func = np.fmax.reduce
- for dt in dint:
- tmp1 = seq1.astype(dt)
- tmp2 = seq2.astype(dt)
- assert_equal(func(tmp1), 10)
- assert_equal(func(tmp2), 10)
- for dt in dflt:
- tmp1 = seq1.astype(dt)
- tmp2 = seq2.astype(dt)
- assert_equal(func(tmp1), 10)
- assert_equal(func(tmp2), 10)
- tmp1[::2] = np.nan
- tmp2[::2] = np.nan
- assert_equal(func(tmp1), 9)
- assert_equal(func(tmp2), 9)
- def test_reduce_complex(self):
- assert_equal(np.fmax.reduce([1, 2j]), 1)
- assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j)
- def test_float_nans(self):
- nan = np.nan
- arg1 = np.array([0, nan, nan])
- arg2 = np.array([nan, 0, nan])
- out = np.array([0, 0, nan])
- assert_equal(np.fmax(arg1, arg2), out)
- def test_complex_nans(self):
- nan = np.nan
- for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
- arg1 = np.array([0, cnan, cnan], dtype=complex)
- arg2 = np.array([cnan, 0, cnan], dtype=complex)
- out = np.array([0, 0, nan], dtype=complex)
- assert_equal(np.fmax(arg1, arg2), out)
- def test_precision(self):
- dtypes = [np.float16, np.float32, np.float64, np.longdouble]
- for dt in dtypes:
- dtmin = np.finfo(dt).min
- dtmax = np.finfo(dt).max
- d1 = dt(0.1)
- d1_next = np.nextafter(d1, np.inf)
- test_cases = [
- # v1 v2 expected
- (dtmin, -np.inf, dtmin),
- (dtmax, -np.inf, dtmax),
- (d1, d1_next, d1_next),
- (dtmax, np.nan, dtmax),
- ]
- for v1, v2, expected in test_cases:
- assert_equal(np.fmax([v1], [v2]), [expected])
- assert_equal(np.fmax.reduce([v1, v2]), expected)
- class TestFmin(_FilterInvalids):
- def test_reduce(self):
- dflt = np.typecodes['AllFloat']
- dint = np.typecodes['AllInteger']
- seq1 = np.arange(11)
- seq2 = seq1[::-1]
- func = np.fmin.reduce
- for dt in dint:
- tmp1 = seq1.astype(dt)
- tmp2 = seq2.astype(dt)
- assert_equal(func(tmp1), 0)
- assert_equal(func(tmp2), 0)
- for dt in dflt:
- tmp1 = seq1.astype(dt)
- tmp2 = seq2.astype(dt)
- assert_equal(func(tmp1), 0)
- assert_equal(func(tmp2), 0)
- tmp1[::2] = np.nan
- tmp2[::2] = np.nan
- assert_equal(func(tmp1), 1)
- assert_equal(func(tmp2), 1)
- def test_reduce_complex(self):
- assert_equal(np.fmin.reduce([1, 2j]), 2j)
- assert_equal(np.fmin.reduce([1+3j, 2j]), 2j)
- def test_float_nans(self):
- nan = np.nan
- arg1 = np.array([0, nan, nan])
- arg2 = np.array([nan, 0, nan])
- out = np.array([0, 0, nan])
- assert_equal(np.fmin(arg1, arg2), out)
- def test_complex_nans(self):
- nan = np.nan
- for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
- arg1 = np.array([0, cnan, cnan], dtype=complex)
- arg2 = np.array([cnan, 0, cnan], dtype=complex)
- out = np.array([0, 0, nan], dtype=complex)
- assert_equal(np.fmin(arg1, arg2), out)
- def test_precision(self):
- dtypes = [np.float16, np.float32, np.float64, np.longdouble]
- for dt in dtypes:
- dtmin = np.finfo(dt).min
- dtmax = np.finfo(dt).max
- d1 = dt(0.1)
- d1_next = np.nextafter(d1, np.inf)
- test_cases = [
- # v1 v2 expected
- (dtmin, np.inf, dtmin),
- (dtmax, np.inf, dtmax),
- (d1, d1_next, d1),
- (dtmin, np.nan, dtmin),
- ]
- for v1, v2, expected in test_cases:
- assert_equal(np.fmin([v1], [v2]), [expected])
- assert_equal(np.fmin.reduce([v1, v2]), expected)
- class TestBool:
- def test_exceptions(self):
- a = np.ones(1, dtype=np.bool_)
- assert_raises(TypeError, np.negative, a)
- assert_raises(TypeError, np.positive, a)
- assert_raises(TypeError, np.subtract, a, a)
- def test_truth_table_logical(self):
- # 2, 3 and 4 serves as true values
- input1 = [0, 0, 3, 2]
- input2 = [0, 4, 0, 2]
- typecodes = (np.typecodes['AllFloat']
- + np.typecodes['AllInteger']
- + '?') # boolean
- for dtype in map(np.dtype, typecodes):
- arg1 = np.asarray(input1, dtype=dtype)
- arg2 = np.asarray(input2, dtype=dtype)
- # OR
- out = [False, True, True, True]
- for func in (np.logical_or, np.maximum):
- assert_equal(func(arg1, arg2).astype(bool), out)
- # AND
- out = [False, False, False, True]
- for func in (np.logical_and, np.minimum):
- assert_equal(func(arg1, arg2).astype(bool), out)
- # XOR
- out = [False, True, True, False]
- for func in (np.logical_xor, np.not_equal):
- assert_equal(func(arg1, arg2).astype(bool), out)
- def test_truth_table_bitwise(self):
- arg1 = [False, False, True, True]
- arg2 = [False, True, False, True]
- out = [False, True, True, True]
- assert_equal(np.bitwise_or(arg1, arg2), out)
- out = [False, False, False, True]
- assert_equal(np.bitwise_and(arg1, arg2), out)
- out = [False, True, True, False]
- assert_equal(np.bitwise_xor(arg1, arg2), out)
- def test_reduce(self):
- none = np.array([0, 0, 0, 0], bool)
- some = np.array([1, 0, 1, 1], bool)
- every = np.array([1, 1, 1, 1], bool)
- empty = np.array([], bool)
- arrs = [none, some, every, empty]
- for arr in arrs:
- assert_equal(np.logical_and.reduce(arr), all(arr))
- for arr in arrs:
- assert_equal(np.logical_or.reduce(arr), any(arr))
- for arr in arrs:
- assert_equal(np.logical_xor.reduce(arr), arr.sum() % 2 == 1)
- class TestBitwiseUFuncs:
- bitwise_types = [np.dtype(c) for c in '?' + 'bBhHiIlLqQ' + 'O']
- def test_values(self):
- for dt in self.bitwise_types:
- zeros = np.array([0], dtype=dt)
- ones = np.array([-1]).astype(dt)
- msg = "dt = '%s'" % dt.char
- assert_equal(np.bitwise_not(zeros), ones, err_msg=msg)
- assert_equal(np.bitwise_not(ones), zeros, err_msg=msg)
- assert_equal(np.bitwise_or(zeros, zeros), zeros, err_msg=msg)
- assert_equal(np.bitwise_or(zeros, ones), ones, err_msg=msg)
- assert_equal(np.bitwise_or(ones, zeros), ones, err_msg=msg)
- assert_equal(np.bitwise_or(ones, ones), ones, err_msg=msg)
- assert_equal(np.bitwise_xor(zeros, zeros), zeros, err_msg=msg)
- assert_equal(np.bitwise_xor(zeros, ones), ones, err_msg=msg)
- assert_equal(np.bitwise_xor(ones, zeros), ones, err_msg=msg)
- assert_equal(np.bitwise_xor(ones, ones), zeros, err_msg=msg)
- assert_equal(np.bitwise_and(zeros, zeros), zeros, err_msg=msg)
- assert_equal(np.bitwise_and(zeros, ones), zeros, err_msg=msg)
- assert_equal(np.bitwise_and(ones, zeros), zeros, err_msg=msg)
- assert_equal(np.bitwise_and(ones, ones), ones, err_msg=msg)
- def test_types(self):
- for dt in self.bitwise_types:
- zeros = np.array([0], dtype=dt)
- ones = np.array([-1]).astype(dt)
- msg = "dt = '%s'" % dt.char
- assert_(np.bitwise_not(zeros).dtype == dt, msg)
- assert_(np.bitwise_or(zeros, zeros).dtype == dt, msg)
- assert_(np.bitwise_xor(zeros, zeros).dtype == dt, msg)
- assert_(np.bitwise_and(zeros, zeros).dtype == dt, msg)
- def test_identity(self):
- assert_(np.bitwise_or.identity == 0, 'bitwise_or')
- assert_(np.bitwise_xor.identity == 0, 'bitwise_xor')
- assert_(np.bitwise_and.identity == -1, 'bitwise_and')
- def test_reduction(self):
- binary_funcs = (np.bitwise_or, np.bitwise_xor, np.bitwise_and)
- for dt in self.bitwise_types:
- zeros = np.array([0], dtype=dt)
- ones = np.array([-1]).astype(dt)
- for f in binary_funcs:
- msg = "dt: '%s', f: '%s'" % (dt, f)
- assert_equal(f.reduce(zeros), zeros, err_msg=msg)
- assert_equal(f.reduce(ones), ones, err_msg=msg)
- # Test empty reduction, no object dtype
- for dt in self.bitwise_types[:-1]:
- # No object array types
- empty = np.array([], dtype=dt)
- for f in binary_funcs:
- msg = "dt: '%s', f: '%s'" % (dt, f)
- tgt = np.array(f.identity).astype(dt)
- res = f.reduce(empty)
- assert_equal(res, tgt, err_msg=msg)
- assert_(res.dtype == tgt.dtype, msg)
- # Empty object arrays use the identity. Note that the types may
- # differ, the actual type used is determined by the assign_identity
- # function and is not the same as the type returned by the identity
- # method.
- for f in binary_funcs:
- msg = "dt: '%s'" % (f,)
- empty = np.array([], dtype=object)
- tgt = f.identity
- res = f.reduce(empty)
- assert_equal(res, tgt, err_msg=msg)
- # Non-empty object arrays do not use the identity
- for f in binary_funcs:
- msg = "dt: '%s'" % (f,)
- btype = np.array([True], dtype=object)
- assert_(type(f.reduce(btype)) is bool, msg)
- class TestInt:
- def test_logical_not(self):
- x = np.ones(10, dtype=np.int16)
- o = np.ones(10 * 2, dtype=bool)
- tgt = o.copy()
- tgt[::2] = False
- os = o[::2]
- assert_array_equal(np.logical_not(x, out=os), False)
- assert_array_equal(o, tgt)
- class TestFloatingPoint:
- def test_floating_point(self):
- assert_equal(ncu.FLOATING_POINT_SUPPORT, 1)
- class TestDegrees:
- def test_degrees(self):
- assert_almost_equal(ncu.degrees(np.pi), 180.0)
- assert_almost_equal(ncu.degrees(-0.5*np.pi), -90.0)
- class TestRadians:
- def test_radians(self):
- assert_almost_equal(ncu.radians(180.0), np.pi)
- assert_almost_equal(ncu.radians(-90.0), -0.5*np.pi)
- class TestHeavside:
- def test_heaviside(self):
- x = np.array([[-30.0, -0.1, 0.0, 0.2], [7.5, np.nan, np.inf, -np.inf]])
- expectedhalf = np.array([[0.0, 0.0, 0.5, 1.0], [1.0, np.nan, 1.0, 0.0]])
- expected1 = expectedhalf.copy()
- expected1[0, 2] = 1
- h = ncu.heaviside(x, 0.5)
- assert_equal(h, expectedhalf)
- h = ncu.heaviside(x, 1.0)
- assert_equal(h, expected1)
- x = x.astype(np.float32)
- h = ncu.heaviside(x, np.float32(0.5))
- assert_equal(h, expectedhalf.astype(np.float32))
- h = ncu.heaviside(x, np.float32(1.0))
- assert_equal(h, expected1.astype(np.float32))
- class TestSign:
- def test_sign(self):
- a = np.array([np.inf, -np.inf, np.nan, 0.0, 3.0, -3.0])
- out = np.zeros(a.shape)
- tgt = np.array([1., -1., np.nan, 0.0, 1.0, -1.0])
- with np.errstate(invalid='ignore'):
- res = ncu.sign(a)
- assert_equal(res, tgt)
- res = ncu.sign(a, out)
- assert_equal(res, tgt)
- assert_equal(out, tgt)
- def test_sign_dtype_object(self):
- # In reference to github issue #6229
- foo = np.array([-.1, 0, .1])
- a = np.sign(foo.astype(object))
- b = np.sign(foo)
- assert_array_equal(a, b)
- def test_sign_dtype_nan_object(self):
- # In reference to github issue #6229
- def test_nan():
- foo = np.array([np.nan])
- # FIXME: a not used
- a = np.sign(foo.astype(object))
- assert_raises(TypeError, test_nan)
- class TestMinMax:
- def test_minmax_blocked(self):
- # simd tests on max/min, test all alignments, slow but important
- # for 2 * vz + 2 * (vs - 1) + 1 (unrolled once)
- for dt, sz in [(np.float32, 15), (np.float64, 7)]:
- for out, inp, msg in _gen_alignment_data(dtype=dt, type='unary',
- max_size=sz):
- for i in range(inp.size):
- inp[:] = np.arange(inp.size, dtype=dt)
- inp[i] = np.nan
- emsg = lambda: '%r\n%s' % (inp, msg)
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning,
- "invalid value encountered in reduce")
- assert_(np.isnan(inp.max()), msg=emsg)
- assert_(np.isnan(inp.min()), msg=emsg)
- inp[i] = 1e10
- assert_equal(inp.max(), 1e10, err_msg=msg)
- inp[i] = -1e10
- assert_equal(inp.min(), -1e10, err_msg=msg)
- def test_lower_align(self):
- # check data that is not aligned to element size
- # i.e doubles are aligned to 4 bytes on i386
- d = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64)
- assert_equal(d.max(), d[0])
- assert_equal(d.min(), d[0])
- def test_reduce_reorder(self):
- # gh 10370, 11029 Some compilers reorder the call to npy_getfloatstatus
- # and put it before the call to an intrisic function that causes
- # invalid status to be set. Also make sure warnings are not emitted
- for n in (2, 4, 8, 16, 32):
- for dt in (np.float32, np.float16, np.complex64):
- for r in np.diagflat(np.array([np.nan] * n, dtype=dt)):
- assert_equal(np.min(r), np.nan)
- def test_minimize_no_warns(self):
- a = np.minimum(np.nan, 1)
- assert_equal(a, np.nan)
- class TestAbsoluteNegative:
- def test_abs_neg_blocked(self):
- # simd tests on abs, test all alignments for vz + 2 * (vs - 1) + 1
- for dt, sz in [(np.float32, 11), (np.float64, 5)]:
- for out, inp, msg in _gen_alignment_data(dtype=dt, type='unary',
- max_size=sz):
- tgt = [ncu.absolute(i) for i in inp]
- np.absolute(inp, out=out)
- assert_equal(out, tgt, err_msg=msg)
- assert_((out >= 0).all())
- tgt = [-1*(i) for i in inp]
- np.negative(inp, out=out)
- assert_equal(out, tgt, err_msg=msg)
- for v in [np.nan, -np.inf, np.inf]:
- for i in range(inp.size):
- d = np.arange(inp.size, dtype=dt)
- inp[:] = -d
- inp[i] = v
- d[i] = -v if v == -np.inf else v
- assert_array_equal(np.abs(inp), d, err_msg=msg)
- np.abs(inp, out=out)
- assert_array_equal(out, d, err_msg=msg)
- assert_array_equal(-inp, -1*inp, err_msg=msg)
- d = -1 * inp
- np.negative(inp, out=out)
- assert_array_equal(out, d, err_msg=msg)
- def test_lower_align(self):
- # check data that is not aligned to element size
- # i.e doubles are aligned to 4 bytes on i386
- d = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64)
- assert_equal(np.abs(d), d)
- assert_equal(np.negative(d), -d)
- np.negative(d, out=d)
- np.negative(np.ones_like(d), out=d)
- np.abs(d, out=d)
- np.abs(np.ones_like(d), out=d)
- class TestPositive:
- def test_valid(self):
- valid_dtypes = [int, float, complex, object]
- for dtype in valid_dtypes:
- x = np.arange(5, dtype=dtype)
- result = np.positive(x)
- assert_equal(x, result, err_msg=str(dtype))
- def test_invalid(self):
- with assert_raises(TypeError):
- np.positive(True)
- with assert_raises(TypeError):
- np.positive(np.datetime64('2000-01-01'))
- with assert_raises(TypeError):
- np.positive(np.array(['foo'], dtype=str))
- with assert_raises(TypeError):
- np.positive(np.array(['bar'], dtype=object))
- class TestSpecialMethods:
- def test_wrap(self):
- class with_wrap:
- def __array__(self):
- return np.zeros(1)
- def __array_wrap__(self, arr, context):
- r = with_wrap()
- r.arr = arr
- r.context = context
- return r
- a = with_wrap()
- x = ncu.minimum(a, a)
- assert_equal(x.arr, np.zeros(1))
- func, args, i = x.context
- assert_(func is ncu.minimum)
- assert_equal(len(args), 2)
- assert_equal(args[0], a)
- assert_equal(args[1], a)
- assert_equal(i, 0)
- def test_wrap_and_prepare_out(self):
- # Calling convention for out should not affect how special methods are
- # called
- class StoreArrayPrepareWrap(np.ndarray):
- _wrap_args = None
- _prepare_args = None
- def __new__(cls):
- return np.zeros(()).view(cls)
- def __array_wrap__(self, obj, context):
- self._wrap_args = context[1]
- return obj
- def __array_prepare__(self, obj, context):
- self._prepare_args = context[1]
- return obj
- @property
- def args(self):
- # We need to ensure these are fetched at the same time, before
- # any other ufuncs are called by the assertions
- return (self._prepare_args, self._wrap_args)
- def __repr__(self):
- return "a" # for short test output
- def do_test(f_call, f_expected):
- a = StoreArrayPrepareWrap()
- f_call(a)
- p, w = a.args
- expected = f_expected(a)
- try:
- assert_equal(p, expected)
- assert_equal(w, expected)
- except AssertionError as e:
- # assert_equal produces truly useless error messages
- raise AssertionError("\n".join([
- "Bad arguments passed in ufunc call",
- " expected: {}".format(expected),
- " __array_prepare__ got: {}".format(p),
- " __array_wrap__ got: {}".format(w)
- ]))
- # method not on the out argument
- do_test(lambda a: np.add(a, 0), lambda a: (a, 0))
- do_test(lambda a: np.add(a, 0, None), lambda a: (a, 0))
- do_test(lambda a: np.add(a, 0, out=None), lambda a: (a, 0))
- do_test(lambda a: np.add(a, 0, out=(None,)), lambda a: (a, 0))
- # method on the out argument
- do_test(lambda a: np.add(0, 0, a), lambda a: (0, 0, a))
- do_test(lambda a: np.add(0, 0, out=a), lambda a: (0, 0, a))
- do_test(lambda a: np.add(0, 0, out=(a,)), lambda a: (0, 0, a))
- # Also check the where mask handling:
- do_test(lambda a: np.add(a, 0, where=False), lambda a: (a, 0))
- do_test(lambda a: np.add(0, 0, a, where=False), lambda a: (0, 0, a))
- def test_wrap_with_iterable(self):
- # test fix for bug #1026:
- class with_wrap(np.ndarray):
- __array_priority__ = 10
- def __new__(cls):
- return np.asarray(1).view(cls).copy()
- def __array_wrap__(self, arr, context):
- return arr.view(type(self))
- a = with_wrap()
- x = ncu.multiply(a, (1, 2, 3))
- assert_(isinstance(x, with_wrap))
- assert_array_equal(x, np.array((1, 2, 3)))
- def test_priority_with_scalar(self):
- # test fix for bug #826:
- class A(np.ndarray):
- __array_priority__ = 10
- def __new__(cls):
- return np.asarray(1.0, 'float64').view(cls).copy()
- a = A()
- x = np.float64(1)*a
- assert_(isinstance(x, A))
- assert_array_equal(x, np.array(1))
- def test_old_wrap(self):
- class with_wrap:
- def __array__(self):
- return np.zeros(1)
- def __array_wrap__(self, arr):
- r = with_wrap()
- r.arr = arr
- return r
- a = with_wrap()
- x = ncu.minimum(a, a)
- assert_equal(x.arr, np.zeros(1))
- def test_priority(self):
- class A:
- def __array__(self):
- return np.zeros(1)
- def __array_wrap__(self, arr, context):
- r = type(self)()
- r.arr = arr
- r.context = context
- return r
- class B(A):
- __array_priority__ = 20.
- class C(A):
- __array_priority__ = 40.
- x = np.zeros(1)
- a = A()
- b = B()
- c = C()
- f = ncu.minimum
- assert_(type(f(x, x)) is np.ndarray)
- assert_(type(f(x, a)) is A)
- assert_(type(f(x, b)) is B)
- assert_(type(f(x, c)) is C)
- assert_(type(f(a, x)) is A)
- assert_(type(f(b, x)) is B)
- assert_(type(f(c, x)) is C)
- assert_(type(f(a, a)) is A)
- assert_(type(f(a, b)) is B)
- assert_(type(f(b, a)) is B)
- assert_(type(f(b, b)) is B)
- assert_(type(f(b, c)) is C)
- assert_(type(f(c, b)) is C)
- assert_(type(f(c, c)) is C)
- assert_(type(ncu.exp(a) is A))
- assert_(type(ncu.exp(b) is B))
- assert_(type(ncu.exp(c) is C))
- def test_failing_wrap(self):
- class A:
- def __array__(self):
- return np.zeros(2)
- def __array_wrap__(self, arr, context):
- raise RuntimeError
- a = A()
- assert_raises(RuntimeError, ncu.maximum, a, a)
- assert_raises(RuntimeError, ncu.maximum.reduce, a)
- def test_failing_out_wrap(self):
- singleton = np.array([1.0])
- class Ok(np.ndarray):
- def __array_wrap__(self, obj):
- return singleton
- class Bad(np.ndarray):
- def __array_wrap__(self, obj):
- raise RuntimeError
- ok = np.empty(1).view(Ok)
- bad = np.empty(1).view(Bad)
- # double-free (segfault) of "ok" if "bad" raises an exception
- for i in range(10):
- assert_raises(RuntimeError, ncu.frexp, 1, ok, bad)
- def test_none_wrap(self):
- # Tests that issue #8507 is resolved. Previously, this would segfault
- class A:
- def __array__(self):
- return np.zeros(1)
- def __array_wrap__(self, arr, context=None):
- return None
- a = A()
- assert_equal(ncu.maximum(a, a), None)
- def test_default_prepare(self):
- class with_wrap:
- __array_priority__ = 10
- def __array__(self):
- return np.zeros(1)
- def __array_wrap__(self, arr, context):
- return arr
- a = with_wrap()
- x = ncu.minimum(a, a)
- assert_equal(x, np.zeros(1))
- assert_equal(type(x), np.ndarray)
- @pytest.mark.parametrize("use_where", [True, False])
- def test_prepare(self, use_where):
- class with_prepare(np.ndarray):
- __array_priority__ = 10
- def __array_prepare__(self, arr, context):
- # make sure we can return a new
- return np.array(arr).view(type=with_prepare)
- a = np.array(1).view(type=with_prepare)
- if use_where:
- x = np.add(a, a, where=np.array(True))
- else:
- x = np.add(a, a)
- assert_equal(x, np.array(2))
- assert_equal(type(x), with_prepare)
- @pytest.mark.parametrize("use_where", [True, False])
- def test_prepare_out(self, use_where):
- class with_prepare(np.ndarray):
- __array_priority__ = 10
- def __array_prepare__(self, arr, context):
- return np.array(arr).view(type=with_prepare)
- a = np.array([1]).view(type=with_prepare)
- if use_where:
- x = np.add(a, a, a, where=[True])
- else:
- x = np.add(a, a, a)
- # Returned array is new, because of the strange
- # __array_prepare__ above
- assert_(not np.shares_memory(x, a))
- assert_equal(x, np.array([2]))
- assert_equal(type(x), with_prepare)
- def test_failing_prepare(self):
- class A:
- def __array__(self):
- return np.zeros(1)
- def __array_prepare__(self, arr, context=None):
- raise RuntimeError
- a = A()
- assert_raises(RuntimeError, ncu.maximum, a, a)
- assert_raises(RuntimeError, ncu.maximum, a, a, where=False)
- def test_array_too_many_args(self):
- class A:
- def __array__(self, dtype, context):
- return np.zeros(1)
- a = A()
- assert_raises_regex(TypeError, '2 required positional', np.sum, a)
- def test_ufunc_override(self):
- # check override works even with instance with high priority.
- class A:
- def __array_ufunc__(self, func, method, *inputs, **kwargs):
- return self, func, method, inputs, kwargs
- class MyNDArray(np.ndarray):
- __array_priority__ = 100
- a = A()
- b = np.array([1]).view(MyNDArray)
- res0 = np.multiply(a, b)
- res1 = np.multiply(b, b, out=a)
- # self
- assert_equal(res0[0], a)
- assert_equal(res1[0], a)
- assert_equal(res0[1], np.multiply)
- assert_equal(res1[1], np.multiply)
- assert_equal(res0[2], '__call__')
- assert_equal(res1[2], '__call__')
- assert_equal(res0[3], (a, b))
- assert_equal(res1[3], (b, b))
- assert_equal(res0[4], {})
- assert_equal(res1[4], {'out': (a,)})
- def test_ufunc_override_mro(self):
- # Some multi arg functions for testing.
- def tres_mul(a, b, c):
- return a * b * c
- def quatro_mul(a, b, c, d):
- return a * b * c * d
- # Make these into ufuncs.
- three_mul_ufunc = np.frompyfunc(tres_mul, 3, 1)
- four_mul_ufunc = np.frompyfunc(quatro_mul, 4, 1)
- class A:
- def __array_ufunc__(self, func, method, *inputs, **kwargs):
- return "A"
- class ASub(A):
- def __array_ufunc__(self, func, method, *inputs, **kwargs):
- return "ASub"
- class B:
- def __array_ufunc__(self, func, method, *inputs, **kwargs):
- return "B"
- class C:
- def __init__(self):
- self.count = 0
- def __array_ufunc__(self, func, method, *inputs, **kwargs):
- self.count += 1
- return NotImplemented
- class CSub(C):
- def __array_ufunc__(self, func, method, *inputs, **kwargs):
- self.count += 1
- return NotImplemented
- a = A()
- a_sub = ASub()
- b = B()
- c = C()
- # Standard
- res = np.multiply(a, a_sub)
- assert_equal(res, "ASub")
- res = np.multiply(a_sub, b)
- assert_equal(res, "ASub")
- # With 1 NotImplemented
- res = np.multiply(c, a)
- assert_equal(res, "A")
- assert_equal(c.count, 1)
- # Check our counter works, so we can trust tests below.
- res = np.multiply(c, a)
- assert_equal(c.count, 2)
- # Both NotImplemented.
- c = C()
- c_sub = CSub()
- assert_raises(TypeError, np.multiply, c, c_sub)
- assert_equal(c.count, 1)
- assert_equal(c_sub.count, 1)
- c.count = c_sub.count = 0
- assert_raises(TypeError, np.multiply, c_sub, c)
- assert_equal(c.count, 1)
- assert_equal(c_sub.count, 1)
- c.count = 0
- assert_raises(TypeError, np.multiply, c, c)
- assert_equal(c.count, 1)
- c.count = 0
- assert_raises(TypeError, np.multiply, 2, c)
- assert_equal(c.count, 1)
- # Ternary testing.
- assert_equal(three_mul_ufunc(a, 1, 2), "A")
- assert_equal(three_mul_ufunc(1, a, 2), "A")
- assert_equal(three_mul_ufunc(1, 2, a), "A")
- assert_equal(three_mul_ufunc(a, a, 6), "A")
- assert_equal(three_mul_ufunc(a, 2, a), "A")
- assert_equal(three_mul_ufunc(a, 2, b), "A")
- assert_equal(three_mul_ufunc(a, 2, a_sub), "ASub")
- assert_equal(three_mul_ufunc(a, a_sub, 3), "ASub")
- c.count = 0
- assert_equal(three_mul_ufunc(c, a_sub, 3), "ASub")
- assert_equal(c.count, 1)
- c.count = 0
- assert_equal(three_mul_ufunc(1, a_sub, c), "ASub")
- assert_equal(c.count, 0)
- c.count = 0
- assert_equal(three_mul_ufunc(a, b, c), "A")
- assert_equal(c.count, 0)
- c_sub.count = 0
- assert_equal(three_mul_ufunc(a, b, c_sub), "A")
- assert_equal(c_sub.count, 0)
- assert_equal(three_mul_ufunc(1, 2, b), "B")
- assert_raises(TypeError, three_mul_ufunc, 1, 2, c)
- assert_raises(TypeError, three_mul_ufunc, c_sub, 2, c)
- assert_raises(TypeError, three_mul_ufunc, c_sub, 2, 3)
- # Quaternary testing.
- assert_equal(four_mul_ufunc(a, 1, 2, 3), "A")
- assert_equal(four_mul_ufunc(1, a, 2, 3), "A")
- assert_equal(four_mul_ufunc(1, 1, a, 3), "A")
- assert_equal(four_mul_ufunc(1, 1, 2, a), "A")
- assert_equal(four_mul_ufunc(a, b, 2, 3), "A")
- assert_equal(four_mul_ufunc(1, a, 2, b), "A")
- assert_equal(four_mul_ufunc(b, 1, a, 3), "B")
- assert_equal(four_mul_ufunc(a_sub, 1, 2, a), "ASub")
- assert_equal(four_mul_ufunc(a, 1, 2, a_sub), "ASub")
- c = C()
- c_sub = CSub()
- assert_raises(TypeError, four_mul_ufunc, 1, 2, 3, c)
- assert_equal(c.count, 1)
- c.count = 0
- assert_raises(TypeError, four_mul_ufunc, 1, 2, c_sub, c)
- assert_equal(c_sub.count, 1)
- assert_equal(c.count, 1)
- c2 = C()
- c.count = c_sub.count = 0
- assert_raises(TypeError, four_mul_ufunc, 1, c, c_sub, c2)
- assert_equal(c_sub.count, 1)
- assert_equal(c.count, 1)
- assert_equal(c2.count, 0)
- c.count = c2.count = c_sub.count = 0
- assert_raises(TypeError, four_mul_ufunc, c2, c, c_sub, c)
- assert_equal(c_sub.count, 1)
- assert_equal(c.count, 0)
- assert_equal(c2.count, 1)
- def test_ufunc_override_methods(self):
- class A:
- def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
- return self, ufunc, method, inputs, kwargs
- # __call__
- a = A()
- with assert_raises(TypeError):
- np.multiply.__call__(1, a, foo='bar', answer=42)
- res = np.multiply.__call__(1, a, subok='bar', where=42)
- assert_equal(res[0], a)
- assert_equal(res[1], np.multiply)
- assert_equal(res[2], '__call__')
- assert_equal(res[3], (1, a))
- assert_equal(res[4], {'subok': 'bar', 'where': 42})
- # __call__, wrong args
- assert_raises(TypeError, np.multiply, a)
- assert_raises(TypeError, np.multiply, a, a, a, a)
- assert_raises(TypeError, np.multiply, a, a, sig='a', signature='a')
- assert_raises(TypeError, ncu_tests.inner1d, a, a, axis=0, axes=[0, 0])
- # reduce, positional args
- res = np.multiply.reduce(a, 'axis0', 'dtype0', 'out0', 'keep0')
- assert_equal(res[0], a)
- assert_equal(res[1], np.multiply)
- assert_equal(res[2], 'reduce')
- assert_equal(res[3], (a,))
- assert_equal(res[4], {'dtype':'dtype0',
- 'out': ('out0',),
- 'keepdims': 'keep0',
- 'axis': 'axis0'})
- # reduce, kwargs
- res = np.multiply.reduce(a, axis='axis0', dtype='dtype0', out='out0',
- keepdims='keep0', initial='init0',
- where='where0')
- assert_equal(res[0], a)
- assert_equal(res[1], np.multiply)
- assert_equal(res[2], 'reduce')
- assert_equal(res[3], (a,))
- assert_equal(res[4], {'dtype':'dtype0',
- 'out': ('out0',),
- 'keepdims': 'keep0',
- 'axis': 'axis0',
- 'initial': 'init0',
- 'where': 'where0'})
- # reduce, output equal to None removed, but not other explicit ones,
- # even if they are at their default value.
- res = np.multiply.reduce(a, 0, None, None, False)
- assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False})
- res = np.multiply.reduce(a, out=None, axis=0, keepdims=True)
- assert_equal(res[4], {'axis': 0, 'keepdims': True})
- res = np.multiply.reduce(a, None, out=(None,), dtype=None)
- assert_equal(res[4], {'axis': None, 'dtype': None})
- res = np.multiply.reduce(a, 0, None, None, False, 2, True)
- assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False,
- 'initial': 2, 'where': True})
- # np._NoValue ignored for initial
- res = np.multiply.reduce(a, 0, None, None, False,
- np._NoValue, True)
- assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False,
- 'where': True})
- # None kept for initial, True for where.
- res = np.multiply.reduce(a, 0, None, None, False, None, True)
- assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False,
- 'initial': None, 'where': True})
- # reduce, wrong args
- assert_raises(ValueError, np.multiply.reduce, a, out=())
- assert_raises(ValueError, np.multiply.reduce, a, out=('out0', 'out1'))
- assert_raises(TypeError, np.multiply.reduce, a, 'axis0', axis='axis0')
- # accumulate, pos args
- res = np.multiply.accumulate(a, 'axis0', 'dtype0', 'out0')
- assert_equal(res[0], a)
- assert_equal(res[1], np.multiply)
- assert_equal(res[2], 'accumulate')
- assert_equal(res[3], (a,))
- assert_equal(res[4], {'dtype':'dtype0',
- 'out': ('out0',),
- 'axis': 'axis0'})
- # accumulate, kwargs
- res = np.multiply.accumulate(a, axis='axis0', dtype='dtype0',
- out='out0')
- assert_equal(res[0], a)
- assert_equal(res[1], np.multiply)
- assert_equal(res[2], 'accumulate')
- assert_equal(res[3], (a,))
- assert_equal(res[4], {'dtype':'dtype0',
- 'out': ('out0',),
- 'axis': 'axis0'})
- # accumulate, output equal to None removed.
- res = np.multiply.accumulate(a, 0, None, None)
- assert_equal(res[4], {'axis': 0, 'dtype': None})
- res = np.multiply.accumulate(a, out=None, axis=0, dtype='dtype1')
- assert_equal(res[4], {'axis': 0, 'dtype': 'dtype1'})
- res = np.multiply.accumulate(a, None, out=(None,), dtype=None)
- assert_equal(res[4], {'axis': None, 'dtype': None})
- # accumulate, wrong args
- assert_raises(ValueError, np.multiply.accumulate, a, out=())
- assert_raises(ValueError, np.multiply.accumulate, a,
- out=('out0', 'out1'))
- assert_raises(TypeError, np.multiply.accumulate, a,
- 'axis0', axis='axis0')
- # reduceat, pos args
- res = np.multiply.reduceat(a, [4, 2], 'axis0', 'dtype0', 'out0')
- assert_equal(res[0], a)
- assert_equal(res[1], np.multiply)
- assert_equal(res[2], 'reduceat')
- assert_equal(res[3], (a, [4, 2]))
- assert_equal(res[4], {'dtype':'dtype0',
- 'out': ('out0',),
- 'axis': 'axis0'})
- # reduceat, kwargs
- res = np.multiply.reduceat(a, [4, 2], axis='axis0', dtype='dtype0',
- out='out0')
- assert_equal(res[0], a)
- assert_equal(res[1], np.multiply)
- assert_equal(res[2], 'reduceat')
- assert_equal(res[3], (a, [4, 2]))
- assert_equal(res[4], {'dtype':'dtype0',
- 'out': ('out0',),
- 'axis': 'axis0'})
- # reduceat, output equal to None removed.
- res = np.multiply.reduceat(a, [4, 2], 0, None, None)
- assert_equal(res[4], {'axis': 0, 'dtype': None})
- res = np.multiply.reduceat(a, [4, 2], axis=None, out=None, dtype='dt')
- assert_equal(res[4], {'axis': None, 'dtype': 'dt'})
- res = np.multiply.reduceat(a, [4, 2], None, None, out=(None,))
- assert_equal(res[4], {'axis': None, 'dtype': None})
- # reduceat, wrong args
- assert_raises(ValueError, np.multiply.reduce, a, [4, 2], out=())
- assert_raises(ValueError, np.multiply.reduce, a, [4, 2],
- out=('out0', 'out1'))
- assert_raises(TypeError, np.multiply.reduce, a, [4, 2],
- 'axis0', axis='axis0')
- # outer
- res = np.multiply.outer(a, 42)
- assert_equal(res[0], a)
- assert_equal(res[1], np.multiply)
- assert_equal(res[2], 'outer')
- assert_equal(res[3], (a, 42))
- assert_equal(res[4], {})
- # outer, wrong args
- assert_raises(TypeError, np.multiply.outer, a)
- assert_raises(TypeError, np.multiply.outer, a, a, a, a)
- assert_raises(TypeError, np.multiply.outer, a, a, sig='a', signature='a')
- # at
- res = np.multiply.at(a, [4, 2], 'b0')
- assert_equal(res[0], a)
- assert_equal(res[1], np.multiply)
- assert_equal(res[2], 'at')
- assert_equal(res[3], (a, [4, 2], 'b0'))
- # at, wrong args
- assert_raises(TypeError, np.multiply.at, a)
- assert_raises(TypeError, np.multiply.at, a, a, a, a)
- def test_ufunc_override_out(self):
- class A:
- def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
- return kwargs
- class B:
- def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
- return kwargs
- a = A()
- b = B()
- res0 = np.multiply(a, b, 'out_arg')
- res1 = np.multiply(a, b, out='out_arg')
- res2 = np.multiply(2, b, 'out_arg')
- res3 = np.multiply(3, b, out='out_arg')
- res4 = np.multiply(a, 4, 'out_arg')
- res5 = np.multiply(a, 5, out='out_arg')
- assert_equal(res0['out'][0], 'out_arg')
- assert_equal(res1['out'][0], 'out_arg')
- assert_equal(res2['out'][0], 'out_arg')
- assert_equal(res3['out'][0], 'out_arg')
- assert_equal(res4['out'][0], 'out_arg')
- assert_equal(res5['out'][0], 'out_arg')
- # ufuncs with multiple output modf and frexp.
- res6 = np.modf(a, 'out0', 'out1')
- res7 = np.frexp(a, 'out0', 'out1')
- assert_equal(res6['out'][0], 'out0')
- assert_equal(res6['out'][1], 'out1')
- assert_equal(res7['out'][0], 'out0')
- assert_equal(res7['out'][1], 'out1')
- # While we're at it, check that default output is never passed on.
- assert_(np.sin(a, None) == {})
- assert_(np.sin(a, out=None) == {})
- assert_(np.sin(a, out=(None,)) == {})
- assert_(np.modf(a, None) == {})
- assert_(np.modf(a, None, None) == {})
- assert_(np.modf(a, out=(None, None)) == {})
- with assert_raises(TypeError):
- # Out argument must be tuple, since there are multiple outputs.
- np.modf(a, out=None)
- # don't give positional and output argument, or too many arguments.
- # wrong number of arguments in the tuple is an error too.
- assert_raises(TypeError, np.multiply, a, b, 'one', out='two')
- assert_raises(TypeError, np.multiply, a, b, 'one', 'two')
- assert_raises(ValueError, np.multiply, a, b, out=('one', 'two'))
- assert_raises(TypeError, np.multiply, a, out=())
- assert_raises(TypeError, np.modf, a, 'one', out=('two', 'three'))
- assert_raises(TypeError, np.modf, a, 'one', 'two', 'three')
- assert_raises(ValueError, np.modf, a, out=('one', 'two', 'three'))
- assert_raises(ValueError, np.modf, a, out=('one',))
- def test_ufunc_override_exception(self):
- class A:
- def __array_ufunc__(self, *a, **kwargs):
- raise ValueError("oops")
- a = A()
- assert_raises(ValueError, np.negative, 1, out=a)
- assert_raises(ValueError, np.negative, a)
- assert_raises(ValueError, np.divide, 1., a)
- def test_ufunc_override_not_implemented(self):
- class A:
- def __array_ufunc__(self, *args, **kwargs):
- return NotImplemented
- msg = ("operand type(s) all returned NotImplemented from "
- "__array_ufunc__(<ufunc 'negative'>, '__call__', <*>): 'A'")
- with assert_raises_regex(TypeError, fnmatch.translate(msg)):
- np.negative(A())
- msg = ("operand type(s) all returned NotImplemented from "
- "__array_ufunc__(<ufunc 'add'>, '__call__', <*>, <object *>, "
- "out=(1,)): 'A', 'object', 'int'")
- with assert_raises_regex(TypeError, fnmatch.translate(msg)):
- np.add(A(), object(), out=1)
- def test_ufunc_override_disabled(self):
- class OptOut:
- __array_ufunc__ = None
- opt_out = OptOut()
- # ufuncs always raise
- msg = "operand 'OptOut' does not support ufuncs"
- with assert_raises_regex(TypeError, msg):
- np.add(opt_out, 1)
- with assert_raises_regex(TypeError, msg):
- np.add(1, opt_out)
- with assert_raises_regex(TypeError, msg):
- np.negative(opt_out)
- # opt-outs still hold even when other arguments have pathological
- # __array_ufunc__ implementations
- class GreedyArray:
- def __array_ufunc__(self, *args, **kwargs):
- return self
- greedy = GreedyArray()
- assert_(np.negative(greedy) is greedy)
- with assert_raises_regex(TypeError, msg):
- np.add(greedy, opt_out)
- with assert_raises_regex(TypeError, msg):
- np.add(greedy, 1, out=opt_out)
- def test_gufunc_override(self):
- # gufunc are just ufunc instances, but follow a different path,
- # so check __array_ufunc__ overrides them properly.
- class A:
- def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
- return self, ufunc, method, inputs, kwargs
- inner1d = ncu_tests.inner1d
- a = A()
- res = inner1d(a, a)
- assert_equal(res[0], a)
- assert_equal(res[1], inner1d)
- assert_equal(res[2], '__call__')
- assert_equal(res[3], (a, a))
- assert_equal(res[4], {})
- res = inner1d(1, 1, out=a)
- assert_equal(res[0], a)
- assert_equal(res[1], inner1d)
- assert_equal(res[2], '__call__')
- assert_equal(res[3], (1, 1))
- assert_equal(res[4], {'out': (a,)})
- # wrong number of arguments in the tuple is an error too.
- assert_raises(TypeError, inner1d, a, out='two')
- assert_raises(TypeError, inner1d, a, a, 'one', out='two')
- assert_raises(TypeError, inner1d, a, a, 'one', 'two')
- assert_raises(ValueError, inner1d, a, a, out=('one', 'two'))
- assert_raises(ValueError, inner1d, a, a, out=())
- def test_ufunc_override_with_super(self):
- # NOTE: this class is used in doc/source/user/basics.subclassing.rst
- # if you make any changes here, do update it there too.
- class A(np.ndarray):
- def __array_ufunc__(self, ufunc, method, *inputs, out=None, **kwargs):
- args = []
- in_no = []
- for i, input_ in enumerate(inputs):
- if isinstance(input_, A):
- in_no.append(i)
- args.append(input_.view(np.ndarray))
- else:
- args.append(input_)
- outputs = out
- out_no = []
- if outputs:
- out_args = []
- for j, output in enumerate(outputs):
- if isinstance(output, A):
- out_no.append(j)
- out_args.append(output.view(np.ndarray))
- else:
- out_args.append(output)
- kwargs['out'] = tuple(out_args)
- else:
- outputs = (None,) * ufunc.nout
- info = {}
- if in_no:
- info['inputs'] = in_no
- if out_no:
- info['outputs'] = out_no
- results = super().__array_ufunc__(ufunc, method,
- *args, **kwargs)
- if results is NotImplemented:
- return NotImplemented
- if method == 'at':
- if isinstance(inputs[0], A):
- inputs[0].info = info
- return
- if ufunc.nout == 1:
- results = (results,)
- results = tuple((np.asarray(result).view(A)
- if output is None else output)
- for result, output in zip(results, outputs))
- if results and isinstance(results[0], A):
- results[0].info = info
- return results[0] if len(results) == 1 else results
- class B:
- def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
- if any(isinstance(input_, A) for input_ in inputs):
- return "A!"
- else:
- return NotImplemented
- d = np.arange(5.)
- # 1 input, 1 output
- a = np.arange(5.).view(A)
- b = np.sin(a)
- check = np.sin(d)
- assert_(np.all(check == b))
- assert_equal(b.info, {'inputs': [0]})
- b = np.sin(d, out=(a,))
- assert_(np.all(check == b))
- assert_equal(b.info, {'outputs': [0]})
- assert_(b is a)
- a = np.arange(5.).view(A)
- b = np.sin(a, out=a)
- assert_(np.all(check == b))
- assert_equal(b.info, {'inputs': [0], 'outputs': [0]})
- # 1 input, 2 outputs
- a = np.arange(5.).view(A)
- b1, b2 = np.modf(a)
- assert_equal(b1.info, {'inputs': [0]})
- b1, b2 = np.modf(d, out=(None, a))
- assert_(b2 is a)
- assert_equal(b1.info, {'outputs': [1]})
- a = np.arange(5.).view(A)
- b = np.arange(5.).view(A)
- c1, c2 = np.modf(a, out=(a, b))
- assert_(c1 is a)
- assert_(c2 is b)
- assert_equal(c1.info, {'inputs': [0], 'outputs': [0, 1]})
- # 2 input, 1 output
- a = np.arange(5.).view(A)
- b = np.arange(5.).view(A)
- c = np.add(a, b, out=a)
- assert_(c is a)
- assert_equal(c.info, {'inputs': [0, 1], 'outputs': [0]})
- # some tests with a non-ndarray subclass
- a = np.arange(5.)
- b = B()
- assert_(a.__array_ufunc__(np.add, '__call__', a, b) is NotImplemented)
- assert_(b.__array_ufunc__(np.add, '__call__', a, b) is NotImplemented)
- assert_raises(TypeError, np.add, a, b)
- a = a.view(A)
- assert_(a.__array_ufunc__(np.add, '__call__', a, b) is NotImplemented)
- assert_(b.__array_ufunc__(np.add, '__call__', a, b) == "A!")
- assert_(np.add(a, b) == "A!")
- # regression check for gh-9102 -- tests ufunc.reduce implicitly.
- d = np.array([[1, 2, 3], [1, 2, 3]])
- a = d.view(A)
- c = a.any()
- check = d.any()
- assert_equal(c, check)
- assert_(c.info, {'inputs': [0]})
- c = a.max()
- check = d.max()
- assert_equal(c, check)
- assert_(c.info, {'inputs': [0]})
- b = np.array(0).view(A)
- c = a.max(out=b)
- assert_equal(c, check)
- assert_(c is b)
- assert_(c.info, {'inputs': [0], 'outputs': [0]})
- check = a.max(axis=0)
- b = np.zeros_like(check).view(A)
- c = a.max(axis=0, out=b)
- assert_equal(c, check)
- assert_(c is b)
- assert_(c.info, {'inputs': [0], 'outputs': [0]})
- # simple explicit tests of reduce, accumulate, reduceat
- check = np.add.reduce(d, axis=1)
- c = np.add.reduce(a, axis=1)
- assert_equal(c, check)
- assert_(c.info, {'inputs': [0]})
- b = np.zeros_like(c)
- c = np.add.reduce(a, 1, None, b)
- assert_equal(c, check)
- assert_(c is b)
- assert_(c.info, {'inputs': [0], 'outputs': [0]})
- check = np.add.accumulate(d, axis=0)
- c = np.add.accumulate(a, axis=0)
- assert_equal(c, check)
- assert_(c.info, {'inputs': [0]})
- b = np.zeros_like(c)
- c = np.add.accumulate(a, 0, None, b)
- assert_equal(c, check)
- assert_(c is b)
- assert_(c.info, {'inputs': [0], 'outputs': [0]})
- indices = [0, 2, 1]
- check = np.add.reduceat(d, indices, axis=1)
- c = np.add.reduceat(a, indices, axis=1)
- assert_equal(c, check)
- assert_(c.info, {'inputs': [0]})
- b = np.zeros_like(c)
- c = np.add.reduceat(a, indices, 1, None, b)
- assert_equal(c, check)
- assert_(c is b)
- assert_(c.info, {'inputs': [0], 'outputs': [0]})
- # and a few tests for at
- d = np.array([[1, 2, 3], [1, 2, 3]])
- check = d.copy()
- a = d.copy().view(A)
- np.add.at(check, ([0, 1], [0, 2]), 1.)
- np.add.at(a, ([0, 1], [0, 2]), 1.)
- assert_equal(a, check)
- assert_(a.info, {'inputs': [0]})
- b = np.array(1.).view(A)
- a = d.copy().view(A)
- np.add.at(a, ([0, 1], [0, 2]), b)
- assert_equal(a, check)
- assert_(a.info, {'inputs': [0, 2]})
- class TestChoose:
- def test_mixed(self):
- c = np.array([True, True])
- a = np.array([True, True])
- assert_equal(np.choose(c, (a, 1)), np.array([1, 1]))
- class TestRationalFunctions:
- def test_lcm(self):
- self._test_lcm_inner(np.int16)
- self._test_lcm_inner(np.uint16)
- def test_lcm_object(self):
- self._test_lcm_inner(np.object_)
- def test_gcd(self):
- self._test_gcd_inner(np.int16)
- self._test_lcm_inner(np.uint16)
- def test_gcd_object(self):
- self._test_gcd_inner(np.object_)
- def _test_lcm_inner(self, dtype):
- # basic use
- a = np.array([12, 120], dtype=dtype)
- b = np.array([20, 200], dtype=dtype)
- assert_equal(np.lcm(a, b), [60, 600])
- if not issubclass(dtype, np.unsignedinteger):
- # negatives are ignored
- a = np.array([12, -12, 12, -12], dtype=dtype)
- b = np.array([20, 20, -20, -20], dtype=dtype)
- assert_equal(np.lcm(a, b), [60]*4)
- # reduce
- a = np.array([3, 12, 20], dtype=dtype)
- assert_equal(np.lcm.reduce([3, 12, 20]), 60)
- # broadcasting, and a test including 0
- a = np.arange(6).astype(dtype)
- b = 20
- assert_equal(np.lcm(a, b), [0, 20, 20, 60, 20, 20])
- def _test_gcd_inner(self, dtype):
- # basic use
- a = np.array([12, 120], dtype=dtype)
- b = np.array([20, 200], dtype=dtype)
- assert_equal(np.gcd(a, b), [4, 40])
- if not issubclass(dtype, np.unsignedinteger):
- # negatives are ignored
- a = np.array([12, -12, 12, -12], dtype=dtype)
- b = np.array([20, 20, -20, -20], dtype=dtype)
- assert_equal(np.gcd(a, b), [4]*4)
- # reduce
- a = np.array([15, 25, 35], dtype=dtype)
- assert_equal(np.gcd.reduce(a), 5)
- # broadcasting, and a test including 0
- a = np.arange(6).astype(dtype)
- b = 20
- assert_equal(np.gcd(a, b), [20, 1, 2, 1, 4, 5])
- def test_lcm_overflow(self):
- # verify that we don't overflow when a*b does overflow
- big = np.int32(np.iinfo(np.int32).max // 11)
- a = 2*big
- b = 5*big
- assert_equal(np.lcm(a, b), 10*big)
- def test_gcd_overflow(self):
- for dtype in (np.int32, np.int64):
- # verify that we don't overflow when taking abs(x)
- # not relevant for lcm, where the result is unrepresentable anyway
- a = dtype(np.iinfo(dtype).min) # negative power of two
- q = -(a // 4)
- assert_equal(np.gcd(a, q*3), q)
- assert_equal(np.gcd(a, -q*3), q)
- def test_decimal(self):
- from decimal import Decimal
- a = np.array([1, 1, -1, -1]) * Decimal('0.20')
- b = np.array([1, -1, 1, -1]) * Decimal('0.12')
- assert_equal(np.gcd(a, b), 4*[Decimal('0.04')])
- assert_equal(np.lcm(a, b), 4*[Decimal('0.60')])
- def test_float(self):
- # not well-defined on float due to rounding errors
- assert_raises(TypeError, np.gcd, 0.3, 0.4)
- assert_raises(TypeError, np.lcm, 0.3, 0.4)
- def test_builtin_long(self):
- # sanity check that array coercion is alright for builtin longs
- assert_equal(np.array(2**200).item(), 2**200)
- # expressed as prime factors
- a = np.array(2**100 * 3**5)
- b = np.array([2**100 * 5**7, 2**50 * 3**10])
- assert_equal(np.gcd(a, b), [2**100, 2**50 * 3**5])
- assert_equal(np.lcm(a, b), [2**100 * 3**5 * 5**7, 2**100 * 3**10])
- assert_equal(np.gcd(2**100, 3**100), 1)
- class TestRoundingFunctions:
- def test_object_direct(self):
- """ test direct implementation of these magic methods """
- class C:
- def __floor__(self):
- return 1
- def __ceil__(self):
- return 2
- def __trunc__(self):
- return 3
- arr = np.array([C(), C()])
- assert_equal(np.floor(arr), [1, 1])
- assert_equal(np.ceil(arr), [2, 2])
- assert_equal(np.trunc(arr), [3, 3])
- def test_object_indirect(self):
- """ test implementations via __float__ """
- class C:
- def __float__(self):
- return -2.5
- arr = np.array([C(), C()])
- assert_equal(np.floor(arr), [-3, -3])
- assert_equal(np.ceil(arr), [-2, -2])
- with pytest.raises(TypeError):
- np.trunc(arr) # consistent with math.trunc
- def test_fraction(self):
- f = Fraction(-4, 3)
- assert_equal(np.floor(f), -2)
- assert_equal(np.ceil(f), -1)
- assert_equal(np.trunc(f), -1)
- class TestComplexFunctions:
- funcs = [np.arcsin, np.arccos, np.arctan, np.arcsinh, np.arccosh,
- np.arctanh, np.sin, np.cos, np.tan, np.exp,
- np.exp2, np.log, np.sqrt, np.log10, np.log2,
- np.log1p]
- def test_it(self):
- for f in self.funcs:
- if f is np.arccosh:
- x = 1.5
- else:
- x = .5
- fr = f(x)
- fz = f(complex(x))
- assert_almost_equal(fz.real, fr, err_msg='real part %s' % f)
- assert_almost_equal(fz.imag, 0., err_msg='imag part %s' % f)
- @pytest.mark.xfail(IS_WASM, reason="doesn't work")
- def test_precisions_consistent(self):
- z = 1 + 1j
- for f in self.funcs:
- fcf = f(np.csingle(z))
- fcd = f(np.cdouble(z))
- fcl = f(np.clongdouble(z))
- assert_almost_equal(fcf, fcd, decimal=6, err_msg='fch-fcd %s' % f)
- assert_almost_equal(fcl, fcd, decimal=15, err_msg='fch-fcl %s' % f)
- @pytest.mark.xfail(IS_WASM, reason="doesn't work")
- def test_branch_cuts(self):
- # check branch cuts and continuity on them
- _check_branch_cut(np.log, -0.5, 1j, 1, -1, True)
- _check_branch_cut(np.log2, -0.5, 1j, 1, -1, True)
- _check_branch_cut(np.log10, -0.5, 1j, 1, -1, True)
- _check_branch_cut(np.log1p, -1.5, 1j, 1, -1, True)
- _check_branch_cut(np.sqrt, -0.5, 1j, 1, -1, True)
- _check_branch_cut(np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True)
- _check_branch_cut(np.arccos, [ -2, 2], [1j, 1j], 1, -1, True)
- _check_branch_cut(np.arctan, [0-2j, 2j], [1, 1], -1, 1, True)
- _check_branch_cut(np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True)
- _check_branch_cut(np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True)
- _check_branch_cut(np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True)
- # check against bogus branch cuts: assert continuity between quadrants
- _check_branch_cut(np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1)
- _check_branch_cut(np.arccos, [0-2j, 2j], [ 1, 1], 1, 1)
- _check_branch_cut(np.arctan, [ -2, 2], [1j, 1j], 1, 1)
- _check_branch_cut(np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1)
- _check_branch_cut(np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1)
- _check_branch_cut(np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1)
- @pytest.mark.xfail(IS_WASM, reason="doesn't work")
- def test_branch_cuts_complex64(self):
- # check branch cuts and continuity on them
- _check_branch_cut(np.log, -0.5, 1j, 1, -1, True, np.complex64)
- _check_branch_cut(np.log2, -0.5, 1j, 1, -1, True, np.complex64)
- _check_branch_cut(np.log10, -0.5, 1j, 1, -1, True, np.complex64)
- _check_branch_cut(np.log1p, -1.5, 1j, 1, -1, True, np.complex64)
- _check_branch_cut(np.sqrt, -0.5, 1j, 1, -1, True, np.complex64)
- _check_branch_cut(np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64)
- _check_branch_cut(np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64)
- _check_branch_cut(np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64)
- _check_branch_cut(np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64)
- _check_branch_cut(np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64)
- _check_branch_cut(np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64)
- # check against bogus branch cuts: assert continuity between quadrants
- _check_branch_cut(np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64)
- _check_branch_cut(np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64)
- _check_branch_cut(np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64)
- _check_branch_cut(np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64)
- _check_branch_cut(np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64)
- _check_branch_cut(np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64)
- def test_against_cmath(self):
- import cmath
- points = [-1-1j, -1+1j, +1-1j, +1+1j]
- name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
- 'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
- atol = 4*np.finfo(complex).eps
- for func in self.funcs:
- fname = func.__name__.split('.')[-1]
- cname = name_map.get(fname, fname)
- try:
- cfunc = getattr(cmath, cname)
- except AttributeError:
- continue
- for p in points:
- a = complex(func(np.complex_(p)))
- b = cfunc(p)
- assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
- @pytest.mark.xfail(IS_WASM, reason="doesn't work")
- @pytest.mark.parametrize('dtype', [np.complex64, np.complex_, np.longcomplex])
- def test_loss_of_precision(self, dtype):
- """Check loss of precision in complex arc* functions"""
- # Check against known-good functions
- info = np.finfo(dtype)
- real_dtype = dtype(0.).real.dtype
- eps = info.eps
- def check(x, rtol):
- x = x.astype(real_dtype)
- z = x.astype(dtype)
- d = np.absolute(np.arcsinh(x)/np.arcsinh(z).real - 1)
- assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
- 'arcsinh'))
- z = (1j*x).astype(dtype)
- d = np.absolute(np.arcsinh(x)/np.arcsin(z).imag - 1)
- assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
- 'arcsin'))
- z = x.astype(dtype)
- d = np.absolute(np.arctanh(x)/np.arctanh(z).real - 1)
- assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
- 'arctanh'))
- z = (1j*x).astype(dtype)
- d = np.absolute(np.arctanh(x)/np.arctan(z).imag - 1)
- assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
- 'arctan'))
- # The switchover was chosen as 1e-3; hence there can be up to
- # ~eps/1e-3 of relative cancellation error before it
- x_series = np.logspace(-20, -3.001, 200)
- x_basic = np.logspace(-2.999, 0, 10, endpoint=False)
- if dtype is np.longcomplex:
- if bad_arcsinh():
- pytest.skip("Trig functions of np.longcomplex values known "
- "to be inaccurate on aarch64 and PPC for some "
- "compilation configurations.")
- # It's not guaranteed that the system-provided arc functions
- # are accurate down to a few epsilons. (Eg. on Linux 64-bit)
- # So, give more leeway for long complex tests here:
- check(x_series, 50.0*eps)
- else:
- check(x_series, 2.1*eps)
- check(x_basic, 2.0*eps/1e-3)
- # Check a few points
- z = np.array([1e-5*(1+1j)], dtype=dtype)
- p = 9.999999999333333333e-6 + 1.000000000066666666e-5j
- d = np.absolute(1-np.arctanh(z)/p)
- assert_(np.all(d < 1e-15))
- p = 1.0000000000333333333e-5 + 9.999999999666666667e-6j
- d = np.absolute(1-np.arcsinh(z)/p)
- assert_(np.all(d < 1e-15))
- p = 9.999999999333333333e-6j + 1.000000000066666666e-5
- d = np.absolute(1-np.arctan(z)/p)
- assert_(np.all(d < 1e-15))
- p = 1.0000000000333333333e-5j + 9.999999999666666667e-6
- d = np.absolute(1-np.arcsin(z)/p)
- assert_(np.all(d < 1e-15))
- # Check continuity across switchover points
- def check(func, z0, d=1):
- z0 = np.asarray(z0, dtype=dtype)
- zp = z0 + abs(z0) * d * eps * 2
- zm = z0 - abs(z0) * d * eps * 2
- assert_(np.all(zp != zm), (zp, zm))
- # NB: the cancellation error at the switchover is at least eps
- good = (abs(func(zp) - func(zm)) < 2*eps)
- assert_(np.all(good), (func, z0[~good]))
- for func in (np.arcsinh, np.arcsinh, np.arcsin, np.arctanh, np.arctan):
- pts = [rp+1j*ip for rp in (-1e-3, 0, 1e-3) for ip in(-1e-3, 0, 1e-3)
- if rp != 0 or ip != 0]
- check(func, pts, 1)
- check(func, pts, 1j)
- check(func, pts, 1+1j)
- @np.errstate(all="ignore")
- def test_promotion_corner_cases(self):
- for func in self.funcs:
- assert func(np.float16(1)).dtype == np.float16
- # Integer to low precision float promotion is a dubious choice:
- assert func(np.uint8(1)).dtype == np.float16
- assert func(np.int16(1)).dtype == np.float32
- class TestAttributes:
- def test_attributes(self):
- add = ncu.add
- assert_equal(add.__name__, 'add')
- assert_(add.ntypes >= 18) # don't fail if types added
- assert_('ii->i' in add.types)
- assert_equal(add.nin, 2)
- assert_equal(add.nout, 1)
- assert_equal(add.identity, 0)
- def test_doc(self):
- # don't bother checking the long list of kwargs, which are likely to
- # change
- assert_(ncu.add.__doc__.startswith(
- "add(x1, x2, /, out=None, *, where=True"))
- assert_(ncu.frexp.__doc__.startswith(
- "frexp(x[, out1, out2], / [, out=(None, None)], *, where=True"))
- class TestSubclass:
- def test_subclass_op(self):
- class simple(np.ndarray):
- def __new__(subtype, shape):
- self = np.ndarray.__new__(subtype, shape, dtype=object)
- self.fill(0)
- return self
- a = simple((3, 4))
- assert_equal(a+a, a)
- class TestFrompyfunc:
- def test_identity(self):
- def mul(a, b):
- return a * b
- # with identity=value
- mul_ufunc = np.frompyfunc(mul, nin=2, nout=1, identity=1)
- assert_equal(mul_ufunc.reduce([2, 3, 4]), 24)
- assert_equal(mul_ufunc.reduce(np.ones((2, 2)), axis=(0, 1)), 1)
- assert_equal(mul_ufunc.reduce([]), 1)
- # with identity=None (reorderable)
- mul_ufunc = np.frompyfunc(mul, nin=2, nout=1, identity=None)
- assert_equal(mul_ufunc.reduce([2, 3, 4]), 24)
- assert_equal(mul_ufunc.reduce(np.ones((2, 2)), axis=(0, 1)), 1)
- assert_raises(ValueError, lambda: mul_ufunc.reduce([]))
- # with no identity (not reorderable)
- mul_ufunc = np.frompyfunc(mul, nin=2, nout=1)
- assert_equal(mul_ufunc.reduce([2, 3, 4]), 24)
- assert_raises(ValueError, lambda: mul_ufunc.reduce(np.ones((2, 2)), axis=(0, 1)))
- assert_raises(ValueError, lambda: mul_ufunc.reduce([]))
- def _check_branch_cut(f, x0, dx, re_sign=1, im_sign=-1, sig_zero_ok=False,
- dtype=complex):
- """
- Check for a branch cut in a function.
- Assert that `x0` lies on a branch cut of function `f` and `f` is
- continuous from the direction `dx`.
- Parameters
- ----------
- f : func
- Function to check
- x0 : array-like
- Point on branch cut
- dx : array-like
- Direction to check continuity in
- re_sign, im_sign : {1, -1}
- Change of sign of the real or imaginary part expected
- sig_zero_ok : bool
- Whether to check if the branch cut respects signed zero (if applicable)
- dtype : dtype
- Dtype to check (should be complex)
- """
- x0 = np.atleast_1d(x0).astype(dtype)
- dx = np.atleast_1d(dx).astype(dtype)
- if np.dtype(dtype).char == 'F':
- scale = np.finfo(dtype).eps * 1e2
- atol = np.float32(1e-2)
- else:
- scale = np.finfo(dtype).eps * 1e3
- atol = 1e-4
- y0 = f(x0)
- yp = f(x0 + dx*scale*np.absolute(x0)/np.absolute(dx))
- ym = f(x0 - dx*scale*np.absolute(x0)/np.absolute(dx))
- assert_(np.all(np.absolute(y0.real - yp.real) < atol), (y0, yp))
- assert_(np.all(np.absolute(y0.imag - yp.imag) < atol), (y0, yp))
- assert_(np.all(np.absolute(y0.real - ym.real*re_sign) < atol), (y0, ym))
- assert_(np.all(np.absolute(y0.imag - ym.imag*im_sign) < atol), (y0, ym))
- if sig_zero_ok:
- # check that signed zeros also work as a displacement
- jr = (x0.real == 0) & (dx.real != 0)
- ji = (x0.imag == 0) & (dx.imag != 0)
- if np.any(jr):
- x = x0[jr]
- x.real = np.NZERO
- ym = f(x)
- assert_(np.all(np.absolute(y0[jr].real - ym.real*re_sign) < atol), (y0[jr], ym))
- assert_(np.all(np.absolute(y0[jr].imag - ym.imag*im_sign) < atol), (y0[jr], ym))
- if np.any(ji):
- x = x0[ji]
- x.imag = np.NZERO
- ym = f(x)
- assert_(np.all(np.absolute(y0[ji].real - ym.real*re_sign) < atol), (y0[ji], ym))
- assert_(np.all(np.absolute(y0[ji].imag - ym.imag*im_sign) < atol), (y0[ji], ym))
- def test_copysign():
- assert_(np.copysign(1, -1) == -1)
- with np.errstate(divide="ignore"):
- assert_(1 / np.copysign(0, -1) < 0)
- assert_(1 / np.copysign(0, 1) > 0)
- assert_(np.signbit(np.copysign(np.nan, -1)))
- assert_(not np.signbit(np.copysign(np.nan, 1)))
- def _test_nextafter(t):
- one = t(1)
- two = t(2)
- zero = t(0)
- eps = np.finfo(t).eps
- assert_(np.nextafter(one, two) - one == eps)
- assert_(np.nextafter(one, zero) - one < 0)
- assert_(np.isnan(np.nextafter(np.nan, one)))
- assert_(np.isnan(np.nextafter(one, np.nan)))
- assert_(np.nextafter(one, one) == one)
- def test_nextafter():
- return _test_nextafter(np.float64)
- def test_nextafterf():
- return _test_nextafter(np.float32)
- @pytest.mark.skipif(np.finfo(np.double) == np.finfo(np.longdouble),
- reason="long double is same as double")
- @pytest.mark.xfail(condition=platform.machine().startswith("ppc64"),
- reason="IBM double double")
- def test_nextafterl():
- return _test_nextafter(np.longdouble)
- def test_nextafter_0():
- for t, direction in itertools.product(np.sctypes['float'], (1, -1)):
- # The value of tiny for double double is NaN, so we need to pass the
- # assert
- with suppress_warnings() as sup:
- sup.filter(UserWarning)
- if not np.isnan(np.finfo(t).tiny):
- tiny = np.finfo(t).tiny
- assert_(
- 0. < direction * np.nextafter(t(0), t(direction)) < tiny)
- assert_equal(np.nextafter(t(0), t(direction)) / t(2.1), direction * 0.0)
- def _test_spacing(t):
- one = t(1)
- eps = np.finfo(t).eps
- nan = t(np.nan)
- inf = t(np.inf)
- with np.errstate(invalid='ignore'):
- assert_(np.spacing(one) == eps)
- assert_(np.isnan(np.spacing(nan)))
- assert_(np.isnan(np.spacing(inf)))
- assert_(np.isnan(np.spacing(-inf)))
- assert_(np.spacing(t(1e30)) != 0)
- def test_spacing():
- return _test_spacing(np.float64)
- def test_spacingf():
- return _test_spacing(np.float32)
- @pytest.mark.skipif(np.finfo(np.double) == np.finfo(np.longdouble),
- reason="long double is same as double")
- @pytest.mark.xfail(condition=platform.machine().startswith("ppc64"),
- reason="IBM double double")
- def test_spacingl():
- return _test_spacing(np.longdouble)
- def test_spacing_gfortran():
- # Reference from this fortran file, built with gfortran 4.3.3 on linux
- # 32bits:
- # PROGRAM test_spacing
- # INTEGER, PARAMETER :: SGL = SELECTED_REAL_KIND(p=6, r=37)
- # INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(p=13, r=200)
- #
- # WRITE(*,*) spacing(0.00001_DBL)
- # WRITE(*,*) spacing(1.0_DBL)
- # WRITE(*,*) spacing(1000._DBL)
- # WRITE(*,*) spacing(10500._DBL)
- #
- # WRITE(*,*) spacing(0.00001_SGL)
- # WRITE(*,*) spacing(1.0_SGL)
- # WRITE(*,*) spacing(1000._SGL)
- # WRITE(*,*) spacing(10500._SGL)
- # END PROGRAM
- ref = {np.float64: [1.69406589450860068E-021,
- 2.22044604925031308E-016,
- 1.13686837721616030E-013,
- 1.81898940354585648E-012],
- np.float32: [9.09494702E-13,
- 1.19209290E-07,
- 6.10351563E-05,
- 9.76562500E-04]}
- for dt, dec_ in zip([np.float32, np.float64], (10, 20)):
- x = np.array([1e-5, 1, 1000, 10500], dtype=dt)
- assert_array_almost_equal(np.spacing(x), ref[dt], decimal=dec_)
- def test_nextafter_vs_spacing():
- # XXX: spacing does not handle long double yet
- for t in [np.float32, np.float64]:
- for _f in [1, 1e-5, 1000]:
- f = t(_f)
- f1 = t(_f + 1)
- assert_(np.nextafter(f, f1) - f == np.spacing(f))
- def test_pos_nan():
- """Check np.nan is a positive nan."""
- assert_(np.signbit(np.nan) == 0)
- def test_reduceat():
- """Test bug in reduceat when structured arrays are not copied."""
- db = np.dtype([('name', 'S11'), ('time', np.int64), ('value', np.float32)])
- a = np.empty([100], dtype=db)
- a['name'] = 'Simple'
- a['time'] = 10
- a['value'] = 100
- indx = [0, 7, 15, 25]
- h2 = []
- val1 = indx[0]
- for val2 in indx[1:]:
- h2.append(np.add.reduce(a['value'][val1:val2]))
- val1 = val2
- h2.append(np.add.reduce(a['value'][val1:]))
- h2 = np.array(h2)
- # test buffered -- this should work
- h1 = np.add.reduceat(a['value'], indx)
- assert_array_almost_equal(h1, h2)
- # This is when the error occurs.
- # test no buffer
- np.setbufsize(32)
- h1 = np.add.reduceat(a['value'], indx)
- np.setbufsize(np.UFUNC_BUFSIZE_DEFAULT)
- assert_array_almost_equal(h1, h2)
- def test_reduceat_empty():
- """Reduceat should work with empty arrays"""
- indices = np.array([], 'i4')
- x = np.array([], 'f8')
- result = np.add.reduceat(x, indices)
- assert_equal(result.dtype, x.dtype)
- assert_equal(result.shape, (0,))
- # Another case with a slightly different zero-sized shape
- x = np.ones((5, 2))
- result = np.add.reduceat(x, [], axis=0)
- assert_equal(result.dtype, x.dtype)
- assert_equal(result.shape, (0, 2))
- result = np.add.reduceat(x, [], axis=1)
- assert_equal(result.dtype, x.dtype)
- assert_equal(result.shape, (5, 0))
- def test_complex_nan_comparisons():
- nans = [complex(np.nan, 0), complex(0, np.nan), complex(np.nan, np.nan)]
- fins = [complex(1, 0), complex(-1, 0), complex(0, 1), complex(0, -1),
- complex(1, 1), complex(-1, -1), complex(0, 0)]
- with np.errstate(invalid='ignore'):
- for x in nans + fins:
- x = np.array([x])
- for y in nans + fins:
- y = np.array([y])
- if np.isfinite(x) and np.isfinite(y):
- continue
- assert_equal(x < y, False, err_msg="%r < %r" % (x, y))
- assert_equal(x > y, False, err_msg="%r > %r" % (x, y))
- assert_equal(x <= y, False, err_msg="%r <= %r" % (x, y))
- assert_equal(x >= y, False, err_msg="%r >= %r" % (x, y))
- assert_equal(x == y, False, err_msg="%r == %r" % (x, y))
- def test_rint_big_int():
- # np.rint bug for large integer values on Windows 32-bit and MKL
- # https://github.com/numpy/numpy/issues/6685
- val = 4607998452777363968
- # This is exactly representable in floating point
- assert_equal(val, int(float(val)))
- # Rint should not change the value
- assert_equal(val, np.rint(val))
- @pytest.mark.parametrize('ftype', [np.float32, np.float64])
- def test_memoverlap_accumulate(ftype):
- # Reproduces bug https://github.com/numpy/numpy/issues/15597
- arr = np.array([0.61, 0.60, 0.77, 0.41, 0.19], dtype=ftype)
- out_max = np.array([0.61, 0.61, 0.77, 0.77, 0.77], dtype=ftype)
- out_min = np.array([0.61, 0.60, 0.60, 0.41, 0.19], dtype=ftype)
- assert_equal(np.maximum.accumulate(arr), out_max)
- assert_equal(np.minimum.accumulate(arr), out_min)
- @pytest.mark.parametrize("ufunc, dtype", [
- (ufunc, t[0])
- for ufunc in UFUNCS_BINARY_ACC
- for t in ufunc.types
- if t[-1] == '?' and t[0] not in 'DFGMmO'
- ])
- def test_memoverlap_accumulate_cmp(ufunc, dtype):
- if ufunc.signature:
- pytest.skip('For generic signatures only')
- for size in (2, 8, 32, 64, 128, 256):
- arr = np.array([0, 1, 1]*size, dtype=dtype)
- acc = ufunc.accumulate(arr, dtype='?')
- acc_u8 = acc.view(np.uint8)
- exp = np.array(list(itertools.accumulate(arr, ufunc)), dtype=np.uint8)
- assert_equal(exp, acc_u8)
- @pytest.mark.parametrize("ufunc, dtype", [
- (ufunc, t[0])
- for ufunc in UFUNCS_BINARY_ACC
- for t in ufunc.types
- if t[0] == t[1] and t[0] == t[-1] and t[0] not in 'DFGMmO?'
- ])
- def test_memoverlap_accumulate_symmetric(ufunc, dtype):
- if ufunc.signature:
- pytest.skip('For generic signatures only')
- with np.errstate(all='ignore'):
- for size in (2, 8, 32, 64, 128, 256):
- arr = np.array([0, 1, 2]*size).astype(dtype)
- acc = ufunc.accumulate(arr, dtype=dtype)
- exp = np.array(list(itertools.accumulate(arr, ufunc)), dtype=dtype)
- assert_equal(exp, acc)
- def test_signaling_nan_exceptions():
- with assert_no_warnings():
- a = np.ndarray(shape=(), dtype='float32', buffer=b'\x00\xe0\xbf\xff')
- np.isnan(a)
- @pytest.mark.parametrize("arr", [
- np.arange(2),
- np.matrix([0, 1]),
- np.matrix([[0, 1], [2, 5]]),
- ])
- def test_outer_subclass_preserve(arr):
- # for gh-8661
- class foo(np.ndarray): pass
- actual = np.multiply.outer(arr.view(foo), arr.view(foo))
- assert actual.__class__.__name__ == 'foo'
- def test_outer_bad_subclass():
- class BadArr1(np.ndarray):
- def __array_finalize__(self, obj):
- # The outer call reshapes to 3 dims, try to do a bad reshape.
- if self.ndim == 3:
- self.shape = self.shape + (1,)
- def __array_prepare__(self, obj, context=None):
- return obj
- class BadArr2(np.ndarray):
- def __array_finalize__(self, obj):
- if isinstance(obj, BadArr2):
- # outer inserts 1-sized dims. In that case disturb them.
- if self.shape[-1] == 1:
- self.shape = self.shape[::-1]
- def __array_prepare__(self, obj, context=None):
- return obj
- for cls in [BadArr1, BadArr2]:
- arr = np.ones((2, 3)).view(cls)
- with assert_raises(TypeError) as a:
- # The first array gets reshaped (not the second one)
- np.add.outer(arr, [1, 2])
- # This actually works, since we only see the reshaping error:
- arr = np.ones((2, 3)).view(cls)
- assert type(np.add.outer([1, 2], arr)) is cls
- def test_outer_exceeds_maxdims():
- deep = np.ones((1,) * 17)
- with assert_raises(ValueError):
- np.add.outer(deep, deep)
- def test_bad_legacy_ufunc_silent_errors():
- # legacy ufuncs can't report errors and NumPy can't check if the GIL
- # is released. So NumPy has to check after the GIL is released just to
- # cover all bases. `np.power` uses/used to use this.
- arr = np.arange(3).astype(np.float64)
- with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
- ncu_tests.always_error(arr, arr)
- with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
- # not contiguous means the fast-path cannot be taken
- non_contig = arr.repeat(20).reshape(-1, 6)[:, ::2]
- ncu_tests.always_error(non_contig, arr)
- with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
- ncu_tests.always_error.outer(arr, arr)
- with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
- ncu_tests.always_error.reduce(arr)
- with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
- ncu_tests.always_error.reduceat(arr, [0, 1])
- with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
- ncu_tests.always_error.accumulate(arr)
- with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
- ncu_tests.always_error.at(arr, [0, 1, 2], arr)
- @pytest.mark.parametrize('x1', [np.arange(3.0), [0.0, 1.0, 2.0]])
- def test_bad_legacy_gufunc_silent_errors(x1):
- # Verify that an exception raised in a gufunc loop propagates correctly.
- # The signature of always_error_gufunc is '(i),()->()'.
- with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
- ncu_tests.always_error_gufunc(x1, 0.0)
|