1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087 |
- import contextlib
- import sys
- import warnings
- import itertools
- import operator
- import platform
- from numpy.compat import _pep440
- import pytest
- from hypothesis import given, settings
- from hypothesis.strategies import sampled_from
- from hypothesis.extra import numpy as hynp
- import numpy as np
- from numpy.testing import (
- assert_, assert_equal, assert_raises, assert_almost_equal,
- assert_array_equal, IS_PYPY, suppress_warnings, _gen_alignment_data,
- assert_warns,
- )
- types = [np.bool_, np.byte, np.ubyte, np.short, np.ushort, np.intc, np.uintc,
- np.int_, np.uint, np.longlong, np.ulonglong,
- np.single, np.double, np.longdouble, np.csingle,
- np.cdouble, np.clongdouble]
- floating_types = np.floating.__subclasses__()
- complex_floating_types = np.complexfloating.__subclasses__()
- objecty_things = [object(), None]
- reasonable_operators_for_scalars = [
- operator.lt, operator.le, operator.eq, operator.ne, operator.ge,
- operator.gt, operator.add, operator.floordiv, operator.mod,
- operator.mul, operator.pow, operator.sub, operator.truediv,
- ]
- # This compares scalarmath against ufuncs.
- class TestTypes:
- def test_types(self):
- for atype in types:
- a = atype(1)
- assert_(a == 1, "error with %r: got %r" % (atype, a))
- def test_type_add(self):
- # list of types
- for k, atype in enumerate(types):
- a_scalar = atype(3)
- a_array = np.array([3], dtype=atype)
- for l, btype in enumerate(types):
- b_scalar = btype(1)
- b_array = np.array([1], dtype=btype)
- c_scalar = a_scalar + b_scalar
- c_array = a_array + b_array
- # It was comparing the type numbers, but the new ufunc
- # function-finding mechanism finds the lowest function
- # to which both inputs can be cast - which produces 'l'
- # when you do 'q' + 'b'. The old function finding mechanism
- # skipped ahead based on the first argument, but that
- # does not produce properly symmetric results...
- assert_equal(c_scalar.dtype, c_array.dtype,
- "error with types (%d/'%c' + %d/'%c')" %
- (k, np.dtype(atype).char, l, np.dtype(btype).char))
- def test_type_create(self):
- for k, atype in enumerate(types):
- a = np.array([1, 2, 3], atype)
- b = atype([1, 2, 3])
- assert_equal(a, b)
- def test_leak(self):
- # test leak of scalar objects
- # a leak would show up in valgrind as still-reachable of ~2.6MB
- for i in range(200000):
- np.add(1, 1)
- def check_ufunc_scalar_equivalence(op, arr1, arr2):
- scalar1 = arr1[()]
- scalar2 = arr2[()]
- assert isinstance(scalar1, np.generic)
- assert isinstance(scalar2, np.generic)
- if arr1.dtype.kind == "c" or arr2.dtype.kind == "c":
- comp_ops = {operator.ge, operator.gt, operator.le, operator.lt}
- if op in comp_ops and (np.isnan(scalar1) or np.isnan(scalar2)):
- pytest.xfail("complex comp ufuncs use sort-order, scalars do not.")
- if op == operator.pow and arr2.item() in [-1, 0, 0.5, 1, 2]:
- # array**scalar special case can have different result dtype
- # (Other powers may have issues also, but are not hit here.)
- # TODO: It would be nice to resolve this issue.
- pytest.skip("array**2 can have incorrect/weird result dtype")
- # ignore fpe's since they may just mismatch for integers anyway.
- with warnings.catch_warnings(), np.errstate(all="ignore"):
- # Comparisons DeprecationWarnings replacing errors (2022-03):
- warnings.simplefilter("error", DeprecationWarning)
- try:
- res = op(arr1, arr2)
- except Exception as e:
- with pytest.raises(type(e)):
- op(scalar1, scalar2)
- else:
- scalar_res = op(scalar1, scalar2)
- assert_array_equal(scalar_res, res, strict=True)
- @pytest.mark.slow
- @settings(max_examples=10000, deadline=2000)
- @given(sampled_from(reasonable_operators_for_scalars),
- hynp.arrays(dtype=hynp.scalar_dtypes(), shape=()),
- hynp.arrays(dtype=hynp.scalar_dtypes(), shape=()))
- def test_array_scalar_ufunc_equivalence(op, arr1, arr2):
- """
- This is a thorough test attempting to cover important promotion paths
- and ensuring that arrays and scalars stay as aligned as possible.
- However, if it creates troubles, it should maybe just be removed.
- """
- check_ufunc_scalar_equivalence(op, arr1, arr2)
- @pytest.mark.slow
- @given(sampled_from(reasonable_operators_for_scalars),
- hynp.scalar_dtypes(), hynp.scalar_dtypes())
- def test_array_scalar_ufunc_dtypes(op, dt1, dt2):
- # Same as above, but don't worry about sampling weird values so that we
- # do not have to sample as much
- arr1 = np.array(2, dtype=dt1)
- arr2 = np.array(3, dtype=dt2) # some power do weird things.
- check_ufunc_scalar_equivalence(op, arr1, arr2)
- @pytest.mark.parametrize("fscalar", [np.float16, np.float32])
- def test_int_float_promotion_truediv(fscalar):
- # Promotion for mixed int and float32/float16 must not go to float64
- i = np.int8(1)
- f = fscalar(1)
- expected = np.result_type(i, f)
- assert (i / f).dtype == expected
- assert (f / i).dtype == expected
- # But normal int / int true division goes to float64:
- assert (i / i).dtype == np.dtype("float64")
- # For int16, result has to be ast least float32 (takes ufunc path):
- assert (np.int16(1) / f).dtype == np.dtype("float32")
- class TestBaseMath:
- def test_blocked(self):
- # test alignments offsets for simd instructions
- # alignments for vz + 2 * (vs - 1) + 1
- for dt, sz in [(np.float32, 11), (np.float64, 7), (np.int32, 11)]:
- for out, inp1, inp2, msg in _gen_alignment_data(dtype=dt,
- type='binary',
- max_size=sz):
- exp1 = np.ones_like(inp1)
- inp1[...] = np.ones_like(inp1)
- inp2[...] = np.zeros_like(inp2)
- assert_almost_equal(np.add(inp1, inp2), exp1, err_msg=msg)
- assert_almost_equal(np.add(inp1, 2), exp1 + 2, err_msg=msg)
- assert_almost_equal(np.add(1, inp2), exp1, err_msg=msg)
- np.add(inp1, inp2, out=out)
- assert_almost_equal(out, exp1, err_msg=msg)
- inp2[...] += np.arange(inp2.size, dtype=dt) + 1
- assert_almost_equal(np.square(inp2),
- np.multiply(inp2, inp2), err_msg=msg)
- # skip true divide for ints
- if dt != np.int32:
- assert_almost_equal(np.reciprocal(inp2),
- np.divide(1, inp2), err_msg=msg)
- inp1[...] = np.ones_like(inp1)
- np.add(inp1, 2, out=out)
- assert_almost_equal(out, exp1 + 2, err_msg=msg)
- inp2[...] = np.ones_like(inp2)
- np.add(2, inp2, out=out)
- assert_almost_equal(out, exp1 + 2, err_msg=msg)
- def test_lower_align(self):
- # check data that is not aligned to element size
- # i.e doubles are aligned to 4 bytes on i386
- d = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64)
- o = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64)
- assert_almost_equal(d + d, d * 2)
- np.add(d, d, out=o)
- np.add(np.ones_like(d), d, out=o)
- np.add(d, np.ones_like(d), out=o)
- np.add(np.ones_like(d), d)
- np.add(d, np.ones_like(d))
- class TestPower:
- def test_small_types(self):
- for t in [np.int8, np.int16, np.float16]:
- a = t(3)
- b = a ** 4
- assert_(b == 81, "error with %r: got %r" % (t, b))
- def test_large_types(self):
- for t in [np.int32, np.int64, np.float32, np.float64, np.longdouble]:
- a = t(51)
- b = a ** 4
- msg = "error with %r: got %r" % (t, b)
- if np.issubdtype(t, np.integer):
- assert_(b == 6765201, msg)
- else:
- assert_almost_equal(b, 6765201, err_msg=msg)
- def test_integers_to_negative_integer_power(self):
- # Note that the combination of uint64 with a signed integer
- # has common type np.float64. The other combinations should all
- # raise a ValueError for integer ** negative integer.
- exp = [np.array(-1, dt)[()] for dt in 'bhilq']
- # 1 ** -1 possible special case
- base = [np.array(1, dt)[()] for dt in 'bhilqBHILQ']
- for i1, i2 in itertools.product(base, exp):
- if i1.dtype != np.uint64:
- assert_raises(ValueError, operator.pow, i1, i2)
- else:
- res = operator.pow(i1, i2)
- assert_(res.dtype.type is np.float64)
- assert_almost_equal(res, 1.)
- # -1 ** -1 possible special case
- base = [np.array(-1, dt)[()] for dt in 'bhilq']
- for i1, i2 in itertools.product(base, exp):
- if i1.dtype != np.uint64:
- assert_raises(ValueError, operator.pow, i1, i2)
- else:
- res = operator.pow(i1, i2)
- assert_(res.dtype.type is np.float64)
- assert_almost_equal(res, -1.)
- # 2 ** -1 perhaps generic
- base = [np.array(2, dt)[()] for dt in 'bhilqBHILQ']
- for i1, i2 in itertools.product(base, exp):
- if i1.dtype != np.uint64:
- assert_raises(ValueError, operator.pow, i1, i2)
- else:
- res = operator.pow(i1, i2)
- assert_(res.dtype.type is np.float64)
- assert_almost_equal(res, .5)
- def test_mixed_types(self):
- typelist = [np.int8, np.int16, np.float16,
- np.float32, np.float64, np.int8,
- np.int16, np.int32, np.int64]
- for t1 in typelist:
- for t2 in typelist:
- a = t1(3)
- b = t2(2)
- result = a**b
- msg = ("error with %r and %r:"
- "got %r, expected %r") % (t1, t2, result, 9)
- if np.issubdtype(np.dtype(result), np.integer):
- assert_(result == 9, msg)
- else:
- assert_almost_equal(result, 9, err_msg=msg)
- def test_modular_power(self):
- # modular power is not implemented, so ensure it errors
- a = 5
- b = 4
- c = 10
- expected = pow(a, b, c) # noqa: F841
- for t in (np.int32, np.float32, np.complex64):
- # note that 3-operand power only dispatches on the first argument
- assert_raises(TypeError, operator.pow, t(a), b, c)
- assert_raises(TypeError, operator.pow, np.array(t(a)), b, c)
- def floordiv_and_mod(x, y):
- return (x // y, x % y)
- def _signs(dt):
- if dt in np.typecodes['UnsignedInteger']:
- return (+1,)
- else:
- return (+1, -1)
- class TestModulus:
- def test_modulus_basic(self):
- dt = np.typecodes['AllInteger'] + np.typecodes['Float']
- for op in [floordiv_and_mod, divmod]:
- for dt1, dt2 in itertools.product(dt, dt):
- for sg1, sg2 in itertools.product(_signs(dt1), _signs(dt2)):
- fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s'
- msg = fmt % (op.__name__, dt1, dt2, sg1, sg2)
- a = np.array(sg1*71, dtype=dt1)[()]
- b = np.array(sg2*19, dtype=dt2)[()]
- div, rem = op(a, b)
- assert_equal(div*b + rem, a, err_msg=msg)
- if sg2 == -1:
- assert_(b < rem <= 0, msg)
- else:
- assert_(b > rem >= 0, msg)
- def test_float_modulus_exact(self):
- # test that float results are exact for small integers. This also
- # holds for the same integers scaled by powers of two.
- nlst = list(range(-127, 0))
- plst = list(range(1, 128))
- dividend = nlst + [0] + plst
- divisor = nlst + plst
- arg = list(itertools.product(dividend, divisor))
- tgt = list(divmod(*t) for t in arg)
- a, b = np.array(arg, dtype=int).T
- # convert exact integer results from Python to float so that
- # signed zero can be used, it is checked.
- tgtdiv, tgtrem = np.array(tgt, dtype=float).T
- tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
- tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)
- for op in [floordiv_and_mod, divmod]:
- for dt in np.typecodes['Float']:
- msg = 'op: %s, dtype: %s' % (op.__name__, dt)
- fa = a.astype(dt)
- fb = b.astype(dt)
- # use list comprehension so a_ and b_ are scalars
- div, rem = zip(*[op(a_, b_) for a_, b_ in zip(fa, fb)])
- assert_equal(div, tgtdiv, err_msg=msg)
- assert_equal(rem, tgtrem, err_msg=msg)
- def test_float_modulus_roundoff(self):
- # gh-6127
- dt = np.typecodes['Float']
- for op in [floordiv_and_mod, divmod]:
- for dt1, dt2 in itertools.product(dt, dt):
- for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
- fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s'
- msg = fmt % (op.__name__, dt1, dt2, sg1, sg2)
- a = np.array(sg1*78*6e-8, dtype=dt1)[()]
- b = np.array(sg2*6e-8, dtype=dt2)[()]
- div, rem = op(a, b)
- # Equal assertion should hold when fmod is used
- assert_equal(div*b + rem, a, err_msg=msg)
- if sg2 == -1:
- assert_(b < rem <= 0, msg)
- else:
- assert_(b > rem >= 0, msg)
- def test_float_modulus_corner_cases(self):
- # Check remainder magnitude.
- for dt in np.typecodes['Float']:
- b = np.array(1.0, dtype=dt)
- a = np.nextafter(np.array(0.0, dtype=dt), -b)
- rem = operator.mod(a, b)
- assert_(rem <= b, 'dt: %s' % dt)
- rem = operator.mod(-a, -b)
- assert_(rem >= -b, 'dt: %s' % dt)
- # Check nans, inf
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning, "invalid value encountered in remainder")
- sup.filter(RuntimeWarning, "divide by zero encountered in remainder")
- sup.filter(RuntimeWarning, "divide by zero encountered in floor_divide")
- sup.filter(RuntimeWarning, "divide by zero encountered in divmod")
- sup.filter(RuntimeWarning, "invalid value encountered in divmod")
- for dt in np.typecodes['Float']:
- fone = np.array(1.0, dtype=dt)
- fzer = np.array(0.0, dtype=dt)
- finf = np.array(np.inf, dtype=dt)
- fnan = np.array(np.nan, dtype=dt)
- rem = operator.mod(fone, fzer)
- assert_(np.isnan(rem), 'dt: %s' % dt)
- # MSVC 2008 returns NaN here, so disable the check.
- #rem = operator.mod(fone, finf)
- #assert_(rem == fone, 'dt: %s' % dt)
- rem = operator.mod(fone, fnan)
- assert_(np.isnan(rem), 'dt: %s' % dt)
- rem = operator.mod(finf, fone)
- assert_(np.isnan(rem), 'dt: %s' % dt)
- for op in [floordiv_and_mod, divmod]:
- div, mod = op(fone, fzer)
- assert_(np.isinf(div)) and assert_(np.isnan(mod))
- def test_inplace_floordiv_handling(self):
- # issue gh-12927
- # this only applies to in-place floordiv //=, because the output type
- # promotes to float which does not fit
- a = np.array([1, 2], np.int64)
- b = np.array([1, 2], np.uint64)
- with pytest.raises(TypeError,
- match=r"Cannot cast ufunc 'floor_divide' output from"):
- a //= b
- class TestComplexDivision:
- def test_zero_division(self):
- with np.errstate(all="ignore"):
- for t in [np.complex64, np.complex128]:
- a = t(0.0)
- b = t(1.0)
- assert_(np.isinf(b/a))
- b = t(complex(np.inf, np.inf))
- assert_(np.isinf(b/a))
- b = t(complex(np.inf, np.nan))
- assert_(np.isinf(b/a))
- b = t(complex(np.nan, np.inf))
- assert_(np.isinf(b/a))
- b = t(complex(np.nan, np.nan))
- assert_(np.isnan(b/a))
- b = t(0.)
- assert_(np.isnan(b/a))
- def test_signed_zeros(self):
- with np.errstate(all="ignore"):
- for t in [np.complex64, np.complex128]:
- # tupled (numerator, denominator, expected)
- # for testing as expected == numerator/denominator
- data = (
- (( 0.0,-1.0), ( 0.0, 1.0), (-1.0,-0.0)),
- (( 0.0,-1.0), ( 0.0,-1.0), ( 1.0,-0.0)),
- (( 0.0,-1.0), (-0.0,-1.0), ( 1.0, 0.0)),
- (( 0.0,-1.0), (-0.0, 1.0), (-1.0, 0.0)),
- (( 0.0, 1.0), ( 0.0,-1.0), (-1.0, 0.0)),
- (( 0.0,-1.0), ( 0.0,-1.0), ( 1.0,-0.0)),
- ((-0.0,-1.0), ( 0.0,-1.0), ( 1.0,-0.0)),
- ((-0.0, 1.0), ( 0.0,-1.0), (-1.0,-0.0))
- )
- for cases in data:
- n = cases[0]
- d = cases[1]
- ex = cases[2]
- result = t(complex(n[0], n[1])) / t(complex(d[0], d[1]))
- # check real and imag parts separately to avoid comparison
- # in array context, which does not account for signed zeros
- assert_equal(result.real, ex[0])
- assert_equal(result.imag, ex[1])
- def test_branches(self):
- with np.errstate(all="ignore"):
- for t in [np.complex64, np.complex128]:
- # tupled (numerator, denominator, expected)
- # for testing as expected == numerator/denominator
- data = list()
- # trigger branch: real(fabs(denom)) > imag(fabs(denom))
- # followed by else condition as neither are == 0
- data.append((( 2.0, 1.0), ( 2.0, 1.0), (1.0, 0.0)))
- # trigger branch: real(fabs(denom)) > imag(fabs(denom))
- # followed by if condition as both are == 0
- # is performed in test_zero_division(), so this is skipped
- # trigger else if branch: real(fabs(denom)) < imag(fabs(denom))
- data.append((( 1.0, 2.0), ( 1.0, 2.0), (1.0, 0.0)))
- for cases in data:
- n = cases[0]
- d = cases[1]
- ex = cases[2]
- result = t(complex(n[0], n[1])) / t(complex(d[0], d[1]))
- # check real and imag parts separately to avoid comparison
- # in array context, which does not account for signed zeros
- assert_equal(result.real, ex[0])
- assert_equal(result.imag, ex[1])
- class TestConversion:
- def test_int_from_long(self):
- l = [1e6, 1e12, 1e18, -1e6, -1e12, -1e18]
- li = [10**6, 10**12, 10**18, -10**6, -10**12, -10**18]
- for T in [None, np.float64, np.int64]:
- a = np.array(l, dtype=T)
- assert_equal([int(_m) for _m in a], li)
- a = np.array(l[:3], dtype=np.uint64)
- assert_equal([int(_m) for _m in a], li[:3])
- def test_iinfo_long_values(self):
- for code in 'bBhH':
- with pytest.warns(DeprecationWarning):
- res = np.array(np.iinfo(code).max + 1, dtype=code)
- tgt = np.iinfo(code).min
- assert_(res == tgt)
- for code in np.typecodes['AllInteger']:
- res = np.array(np.iinfo(code).max, dtype=code)
- tgt = np.iinfo(code).max
- assert_(res == tgt)
- for code in np.typecodes['AllInteger']:
- res = np.dtype(code).type(np.iinfo(code).max)
- tgt = np.iinfo(code).max
- assert_(res == tgt)
- def test_int_raise_behaviour(self):
- def overflow_error_func(dtype):
- dtype(np.iinfo(dtype).max + 1)
- for code in [np.int_, np.uint, np.longlong, np.ulonglong]:
- assert_raises(OverflowError, overflow_error_func, code)
- def test_int_from_infinite_longdouble(self):
- # gh-627
- x = np.longdouble(np.inf)
- assert_raises(OverflowError, int, x)
- with suppress_warnings() as sup:
- sup.record(np.ComplexWarning)
- x = np.clongdouble(np.inf)
- assert_raises(OverflowError, int, x)
- assert_equal(len(sup.log), 1)
- @pytest.mark.skipif(not IS_PYPY, reason="Test is PyPy only (gh-9972)")
- def test_int_from_infinite_longdouble___int__(self):
- x = np.longdouble(np.inf)
- assert_raises(OverflowError, x.__int__)
- with suppress_warnings() as sup:
- sup.record(np.ComplexWarning)
- x = np.clongdouble(np.inf)
- assert_raises(OverflowError, x.__int__)
- assert_equal(len(sup.log), 1)
- @pytest.mark.skipif(np.finfo(np.double) == np.finfo(np.longdouble),
- reason="long double is same as double")
- @pytest.mark.skipif(platform.machine().startswith("ppc"),
- reason="IBM double double")
- def test_int_from_huge_longdouble(self):
- # Produce a longdouble that would overflow a double,
- # use exponent that avoids bug in Darwin pow function.
- exp = np.finfo(np.double).maxexp - 1
- huge_ld = 2 * 1234 * np.longdouble(2) ** exp
- huge_i = 2 * 1234 * 2 ** exp
- assert_(huge_ld != np.inf)
- assert_equal(int(huge_ld), huge_i)
- def test_int_from_longdouble(self):
- x = np.longdouble(1.5)
- assert_equal(int(x), 1)
- x = np.longdouble(-10.5)
- assert_equal(int(x), -10)
- def test_numpy_scalar_relational_operators(self):
- # All integer
- for dt1 in np.typecodes['AllInteger']:
- assert_(1 > np.array(0, dtype=dt1)[()], "type %s failed" % (dt1,))
- assert_(not 1 < np.array(0, dtype=dt1)[()], "type %s failed" % (dt1,))
- for dt2 in np.typecodes['AllInteger']:
- assert_(np.array(1, dtype=dt1)[()] > np.array(0, dtype=dt2)[()],
- "type %s and %s failed" % (dt1, dt2))
- assert_(not np.array(1, dtype=dt1)[()] < np.array(0, dtype=dt2)[()],
- "type %s and %s failed" % (dt1, dt2))
- #Unsigned integers
- for dt1 in 'BHILQP':
- assert_(-1 < np.array(1, dtype=dt1)[()], "type %s failed" % (dt1,))
- assert_(not -1 > np.array(1, dtype=dt1)[()], "type %s failed" % (dt1,))
- assert_(-1 != np.array(1, dtype=dt1)[()], "type %s failed" % (dt1,))
- #unsigned vs signed
- for dt2 in 'bhilqp':
- assert_(np.array(1, dtype=dt1)[()] > np.array(-1, dtype=dt2)[()],
- "type %s and %s failed" % (dt1, dt2))
- assert_(not np.array(1, dtype=dt1)[()] < np.array(-1, dtype=dt2)[()],
- "type %s and %s failed" % (dt1, dt2))
- assert_(np.array(1, dtype=dt1)[()] != np.array(-1, dtype=dt2)[()],
- "type %s and %s failed" % (dt1, dt2))
- #Signed integers and floats
- for dt1 in 'bhlqp' + np.typecodes['Float']:
- assert_(1 > np.array(-1, dtype=dt1)[()], "type %s failed" % (dt1,))
- assert_(not 1 < np.array(-1, dtype=dt1)[()], "type %s failed" % (dt1,))
- assert_(-1 == np.array(-1, dtype=dt1)[()], "type %s failed" % (dt1,))
- for dt2 in 'bhlqp' + np.typecodes['Float']:
- assert_(np.array(1, dtype=dt1)[()] > np.array(-1, dtype=dt2)[()],
- "type %s and %s failed" % (dt1, dt2))
- assert_(not np.array(1, dtype=dt1)[()] < np.array(-1, dtype=dt2)[()],
- "type %s and %s failed" % (dt1, dt2))
- assert_(np.array(-1, dtype=dt1)[()] == np.array(-1, dtype=dt2)[()],
- "type %s and %s failed" % (dt1, dt2))
- def test_scalar_comparison_to_none(self):
- # Scalars should just return False and not give a warnings.
- # The comparisons are flagged by pep8, ignore that.
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', FutureWarning)
- assert_(not np.float32(1) == None)
- assert_(not np.str_('test') == None)
- # This is dubious (see below):
- assert_(not np.datetime64('NaT') == None)
- assert_(np.float32(1) != None)
- assert_(np.str_('test') != None)
- # This is dubious (see below):
- assert_(np.datetime64('NaT') != None)
- assert_(len(w) == 0)
- # For documentation purposes, this is why the datetime is dubious.
- # At the time of deprecation this was no behaviour change, but
- # it has to be considered when the deprecations are done.
- assert_(np.equal(np.datetime64('NaT'), None))
- #class TestRepr:
- # def test_repr(self):
- # for t in types:
- # val = t(1197346475.0137341)
- # val_repr = repr(val)
- # val2 = eval(val_repr)
- # assert_equal( val, val2 )
- class TestRepr:
- def _test_type_repr(self, t):
- finfo = np.finfo(t)
- last_fraction_bit_idx = finfo.nexp + finfo.nmant
- last_exponent_bit_idx = finfo.nexp
- storage_bytes = np.dtype(t).itemsize*8
- # could add some more types to the list below
- for which in ['small denorm', 'small norm']:
- # Values from https://en.wikipedia.org/wiki/IEEE_754
- constr = np.array([0x00]*storage_bytes, dtype=np.uint8)
- if which == 'small denorm':
- byte = last_fraction_bit_idx // 8
- bytebit = 7-(last_fraction_bit_idx % 8)
- constr[byte] = 1 << bytebit
- elif which == 'small norm':
- byte = last_exponent_bit_idx // 8
- bytebit = 7-(last_exponent_bit_idx % 8)
- constr[byte] = 1 << bytebit
- else:
- raise ValueError('hmm')
- val = constr.view(t)[0]
- val_repr = repr(val)
- val2 = t(eval(val_repr))
- if not (val2 == 0 and val < 1e-100):
- assert_equal(val, val2)
- def test_float_repr(self):
- # long double test cannot work, because eval goes through a python
- # float
- for t in [np.float32, np.float64]:
- self._test_type_repr(t)
- if not IS_PYPY:
- # sys.getsizeof() is not valid on PyPy
- class TestSizeOf:
- def test_equal_nbytes(self):
- for type in types:
- x = type(0)
- assert_(sys.getsizeof(x) > x.nbytes)
- def test_error(self):
- d = np.float32()
- assert_raises(TypeError, d.__sizeof__, "a")
- class TestMultiply:
- def test_seq_repeat(self):
- # Test that basic sequences get repeated when multiplied with
- # numpy integers. And errors are raised when multiplied with others.
- # Some of this behaviour may be controversial and could be open for
- # change.
- accepted_types = set(np.typecodes["AllInteger"])
- deprecated_types = {'?'}
- forbidden_types = (
- set(np.typecodes["All"]) - accepted_types - deprecated_types)
- forbidden_types -= {'V'} # can't default-construct void scalars
- for seq_type in (list, tuple):
- seq = seq_type([1, 2, 3])
- for numpy_type in accepted_types:
- i = np.dtype(numpy_type).type(2)
- assert_equal(seq * i, seq * int(i))
- assert_equal(i * seq, int(i) * seq)
- for numpy_type in deprecated_types:
- i = np.dtype(numpy_type).type()
- assert_equal(
- assert_warns(DeprecationWarning, operator.mul, seq, i),
- seq * int(i))
- assert_equal(
- assert_warns(DeprecationWarning, operator.mul, i, seq),
- int(i) * seq)
- for numpy_type in forbidden_types:
- i = np.dtype(numpy_type).type()
- assert_raises(TypeError, operator.mul, seq, i)
- assert_raises(TypeError, operator.mul, i, seq)
- def test_no_seq_repeat_basic_array_like(self):
- # Test that an array-like which does not know how to be multiplied
- # does not attempt sequence repeat (raise TypeError).
- # See also gh-7428.
- class ArrayLike:
- def __init__(self, arr):
- self.arr = arr
- def __array__(self):
- return self.arr
- # Test for simple ArrayLike above and memoryviews (original report)
- for arr_like in (ArrayLike(np.ones(3)), memoryview(np.ones(3))):
- assert_array_equal(arr_like * np.float32(3.), np.full(3, 3.))
- assert_array_equal(np.float32(3.) * arr_like, np.full(3, 3.))
- assert_array_equal(arr_like * np.int_(3), np.full(3, 3))
- assert_array_equal(np.int_(3) * arr_like, np.full(3, 3))
- class TestNegative:
- def test_exceptions(self):
- a = np.ones((), dtype=np.bool_)[()]
- assert_raises(TypeError, operator.neg, a)
- def test_result(self):
- types = np.typecodes['AllInteger'] + np.typecodes['AllFloat']
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning)
- for dt in types:
- a = np.ones((), dtype=dt)[()]
- if dt in np.typecodes['UnsignedInteger']:
- st = np.dtype(dt).type
- max = st(np.iinfo(dt).max)
- assert_equal(operator.neg(a), max)
- else:
- assert_equal(operator.neg(a) + a, 0)
- class TestSubtract:
- def test_exceptions(self):
- a = np.ones((), dtype=np.bool_)[()]
- assert_raises(TypeError, operator.sub, a, a)
- def test_result(self):
- types = np.typecodes['AllInteger'] + np.typecodes['AllFloat']
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning)
- for dt in types:
- a = np.ones((), dtype=dt)[()]
- assert_equal(operator.sub(a, a), 0)
- class TestAbs:
- def _test_abs_func(self, absfunc, test_dtype):
- x = test_dtype(-1.5)
- assert_equal(absfunc(x), 1.5)
- x = test_dtype(0.0)
- res = absfunc(x)
- # assert_equal() checks zero signedness
- assert_equal(res, 0.0)
- x = test_dtype(-0.0)
- res = absfunc(x)
- assert_equal(res, 0.0)
- x = test_dtype(np.finfo(test_dtype).max)
- assert_equal(absfunc(x), x.real)
- with suppress_warnings() as sup:
- sup.filter(UserWarning)
- x = test_dtype(np.finfo(test_dtype).tiny)
- assert_equal(absfunc(x), x.real)
- x = test_dtype(np.finfo(test_dtype).min)
- assert_equal(absfunc(x), -x.real)
- @pytest.mark.parametrize("dtype", floating_types + complex_floating_types)
- def test_builtin_abs(self, dtype):
- if (
- sys.platform == "cygwin" and dtype == np.clongdouble and
- (
- _pep440.parse(platform.release().split("-")[0])
- < _pep440.Version("3.3.0")
- )
- ):
- pytest.xfail(
- reason="absl is computed in double precision on cygwin < 3.3"
- )
- self._test_abs_func(abs, dtype)
- @pytest.mark.parametrize("dtype", floating_types + complex_floating_types)
- def test_numpy_abs(self, dtype):
- if (
- sys.platform == "cygwin" and dtype == np.clongdouble and
- (
- _pep440.parse(platform.release().split("-")[0])
- < _pep440.Version("3.3.0")
- )
- ):
- pytest.xfail(
- reason="absl is computed in double precision on cygwin < 3.3"
- )
- self._test_abs_func(np.abs, dtype)
- class TestBitShifts:
- @pytest.mark.parametrize('type_code', np.typecodes['AllInteger'])
- @pytest.mark.parametrize('op',
- [operator.rshift, operator.lshift], ids=['>>', '<<'])
- def test_shift_all_bits(self, type_code, op):
- """ Shifts where the shift amount is the width of the type or wider """
- # gh-2449
- dt = np.dtype(type_code)
- nbits = dt.itemsize * 8
- for val in [5, -5]:
- for shift in [nbits, nbits + 4]:
- val_scl = np.array(val).astype(dt)[()]
- shift_scl = dt.type(shift)
- res_scl = op(val_scl, shift_scl)
- if val_scl < 0 and op is operator.rshift:
- # sign bit is preserved
- assert_equal(res_scl, -1)
- else:
- assert_equal(res_scl, 0)
- # Result on scalars should be the same as on arrays
- val_arr = np.array([val_scl]*32, dtype=dt)
- shift_arr = np.array([shift]*32, dtype=dt)
- res_arr = op(val_arr, shift_arr)
- assert_equal(res_arr, res_scl)
- class TestHash:
- @pytest.mark.parametrize("type_code", np.typecodes['AllInteger'])
- def test_integer_hashes(self, type_code):
- scalar = np.dtype(type_code).type
- for i in range(128):
- assert hash(i) == hash(scalar(i))
- @pytest.mark.parametrize("type_code", np.typecodes['AllFloat'])
- def test_float_and_complex_hashes(self, type_code):
- scalar = np.dtype(type_code).type
- for val in [np.pi, np.inf, 3, 6.]:
- numpy_val = scalar(val)
- # Cast back to Python, in case the NumPy scalar has less precision
- if numpy_val.dtype.kind == 'c':
- val = complex(numpy_val)
- else:
- val = float(numpy_val)
- assert val == numpy_val
- assert hash(val) == hash(numpy_val)
- if hash(float(np.nan)) != hash(float(np.nan)):
- # If Python distinguishes different NaNs we do so too (gh-18833)
- assert hash(scalar(np.nan)) != hash(scalar(np.nan))
- @pytest.mark.parametrize("type_code", np.typecodes['Complex'])
- def test_complex_hashes(self, type_code):
- # Test some complex valued hashes specifically:
- scalar = np.dtype(type_code).type
- for val in [np.pi+1j, np.inf-3j, 3j, 6.+1j]:
- numpy_val = scalar(val)
- assert hash(complex(numpy_val)) == hash(numpy_val)
- @contextlib.contextmanager
- def recursionlimit(n):
- o = sys.getrecursionlimit()
- try:
- sys.setrecursionlimit(n)
- yield
- finally:
- sys.setrecursionlimit(o)
- @given(sampled_from(objecty_things),
- sampled_from(reasonable_operators_for_scalars),
- sampled_from(types))
- def test_operator_object_left(o, op, type_):
- try:
- with recursionlimit(200):
- op(o, type_(1))
- except TypeError:
- pass
- @given(sampled_from(objecty_things),
- sampled_from(reasonable_operators_for_scalars),
- sampled_from(types))
- def test_operator_object_right(o, op, type_):
- try:
- with recursionlimit(200):
- op(type_(1), o)
- except TypeError:
- pass
- @given(sampled_from(reasonable_operators_for_scalars),
- sampled_from(types),
- sampled_from(types))
- def test_operator_scalars(op, type1, type2):
- try:
- op(type1(1), type2(1))
- except TypeError:
- pass
- @pytest.mark.parametrize("op", reasonable_operators_for_scalars)
- @pytest.mark.parametrize("val", [None, 2**64])
- def test_longdouble_inf_loop(op, val):
- # Note: The 2**64 value will pass once NEP 50 is adopted.
- try:
- op(np.longdouble(3), val)
- except TypeError:
- pass
- try:
- op(val, np.longdouble(3))
- except TypeError:
- pass
- @pytest.mark.parametrize("op", reasonable_operators_for_scalars)
- @pytest.mark.parametrize("val", [None, 2**64])
- def test_clongdouble_inf_loop(op, val):
- # Note: The 2**64 value will pass once NEP 50 is adopted.
- try:
- op(np.clongdouble(3), val)
- except TypeError:
- pass
- try:
- op(val, np.longdouble(3))
- except TypeError:
- pass
- @pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
- @pytest.mark.parametrize("operation", [
- lambda min, max: max + max,
- lambda min, max: min - max,
- lambda min, max: max * max], ids=["+", "-", "*"])
- def test_scalar_integer_operation_overflow(dtype, operation):
- st = np.dtype(dtype).type
- min = st(np.iinfo(dtype).min)
- max = st(np.iinfo(dtype).max)
- with pytest.warns(RuntimeWarning, match="overflow encountered"):
- operation(min, max)
- @pytest.mark.parametrize("dtype", np.typecodes["Integer"])
- @pytest.mark.parametrize("operation", [
- lambda min, neg_1: -min,
- lambda min, neg_1: abs(min),
- lambda min, neg_1: min * neg_1,
- pytest.param(lambda min, neg_1: min // neg_1,
- marks=pytest.mark.skip(reason="broken on some platforms"))],
- ids=["neg", "abs", "*", "//"])
- def test_scalar_signed_integer_overflow(dtype, operation):
- # The minimum signed integer can "overflow" for some additional operations
- st = np.dtype(dtype).type
- min = st(np.iinfo(dtype).min)
- neg_1 = st(-1)
- with pytest.warns(RuntimeWarning, match="overflow encountered"):
- operation(min, neg_1)
- @pytest.mark.parametrize("dtype", np.typecodes["UnsignedInteger"])
- def test_scalar_unsigned_integer_overflow(dtype):
- val = np.dtype(dtype).type(8)
- with pytest.warns(RuntimeWarning, match="overflow encountered"):
- -val
- zero = np.dtype(dtype).type(0)
- -zero # does not warn
- @pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
- @pytest.mark.parametrize("operation", [
- lambda val, zero: val // zero,
- lambda val, zero: val % zero, ], ids=["//", "%"])
- def test_scalar_integer_operation_divbyzero(dtype, operation):
- st = np.dtype(dtype).type
- val = st(100)
- zero = st(0)
- with pytest.warns(RuntimeWarning, match="divide by zero"):
- operation(val, zero)
- ops_with_names = [
- ("__lt__", "__gt__", operator.lt, True),
- ("__le__", "__ge__", operator.le, True),
- ("__eq__", "__eq__", operator.eq, True),
- # Note __op__ and __rop__ may be identical here:
- ("__ne__", "__ne__", operator.ne, True),
- ("__gt__", "__lt__", operator.gt, True),
- ("__ge__", "__le__", operator.ge, True),
- ("__floordiv__", "__rfloordiv__", operator.floordiv, False),
- ("__truediv__", "__rtruediv__", operator.truediv, False),
- ("__add__", "__radd__", operator.add, False),
- ("__mod__", "__rmod__", operator.mod, False),
- ("__mul__", "__rmul__", operator.mul, False),
- ("__pow__", "__rpow__", operator.pow, False),
- ("__sub__", "__rsub__", operator.sub, False),
- ]
- @pytest.mark.parametrize(["__op__", "__rop__", "op", "cmp"], ops_with_names)
- @pytest.mark.parametrize("sctype", [np.float32, np.float64, np.longdouble])
- def test_subclass_deferral(sctype, __op__, __rop__, op, cmp):
- """
- This test covers scalar subclass deferral. Note that this is exceedingly
- complicated, especially since it tends to fall back to the array paths and
- these additionally add the "array priority" mechanism.
- The behaviour was modified subtly in 1.22 (to make it closer to how Python
- scalars work). Due to its complexity and the fact that subclassing NumPy
- scalars is probably a bad idea to begin with. There is probably room
- for adjustments here.
- """
- class myf_simple1(sctype):
- pass
- class myf_simple2(sctype):
- pass
- def op_func(self, other):
- return __op__
- def rop_func(self, other):
- return __rop__
- myf_op = type("myf_op", (sctype,), {__op__: op_func, __rop__: rop_func})
- # inheritance has to override, or this is correctly lost:
- res = op(myf_simple1(1), myf_simple2(2))
- assert type(res) == sctype or type(res) == np.bool_
- assert op(myf_simple1(1), myf_simple2(2)) == op(1, 2) # inherited
- # Two independent subclasses do not really define an order. This could
- # be attempted, but we do not since Python's `int` does neither:
- assert op(myf_op(1), myf_simple1(2)) == __op__
- assert op(myf_simple1(1), myf_op(2)) == op(1, 2) # inherited
- def test_longdouble_complex():
- # Simple test to check longdouble and complex combinations, since these
- # need to go through promotion, which longdouble needs to be careful about.
- x = np.longdouble(1)
- assert x + 1j == 1+1j
- assert 1j + x == 1+1j
- @pytest.mark.parametrize(["__op__", "__rop__", "op", "cmp"], ops_with_names)
- @pytest.mark.parametrize("subtype", [float, int, complex, np.float16])
- @np._no_nep50_warning()
- def test_pyscalar_subclasses(subtype, __op__, __rop__, op, cmp):
- def op_func(self, other):
- return __op__
- def rop_func(self, other):
- return __rop__
- # Check that deferring is indicated using `__array_ufunc__`:
- myt = type("myt", (subtype,),
- {__op__: op_func, __rop__: rop_func, "__array_ufunc__": None})
- # Just like normally, we should never presume we can modify the float.
- assert op(myt(1), np.float64(2)) == __op__
- assert op(np.float64(1), myt(2)) == __rop__
- if op in {operator.mod, operator.floordiv} and subtype == complex:
- return # module is not support for complex. Do not test.
- if __rop__ == __op__:
- return
- # When no deferring is indicated, subclasses are handled normally.
- myt = type("myt", (subtype,), {__rop__: rop_func})
- # Check for float32, as a float subclass float64 may behave differently
- res = op(myt(1), np.float16(2))
- expected = op(subtype(1), np.float16(2))
- assert res == expected
- assert type(res) == type(expected)
- res = op(np.float32(2), myt(1))
- expected = op(np.float32(2), subtype(1))
- assert res == expected
- assert type(res) == type(expected)
- # Same check for longdouble:
- res = op(myt(1), np.longdouble(2))
- expected = op(subtype(1), np.longdouble(2))
- assert res == expected
- assert type(res) == type(expected)
- res = op(np.float32(2), myt(1))
- expected = op(np.longdouble(2), subtype(1))
- assert res == expected
|