123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137 |
- import itertools
- import pytest
- import numpy as np
- from numpy.testing import (
- assert_, assert_equal, assert_array_equal, assert_almost_equal,
- assert_raises, suppress_warnings, assert_raises_regex, assert_allclose
- )
- # Setup for optimize einsum
- chars = 'abcdefghij'
- sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3])
- global_size_dict = dict(zip(chars, sizes))
- class TestEinsum:
- def test_einsum_errors(self):
- for do_opt in [True, False]:
- # Need enough arguments
- assert_raises(ValueError, np.einsum, optimize=do_opt)
- assert_raises(ValueError, np.einsum, "", optimize=do_opt)
- # subscripts must be a string
- assert_raises(TypeError, np.einsum, 0, 0, optimize=do_opt)
- # out parameter must be an array
- assert_raises(TypeError, np.einsum, "", 0, out='test',
- optimize=do_opt)
- # order parameter must be a valid order
- assert_raises(ValueError, np.einsum, "", 0, order='W',
- optimize=do_opt)
- # casting parameter must be a valid casting
- assert_raises(ValueError, np.einsum, "", 0, casting='blah',
- optimize=do_opt)
- # dtype parameter must be a valid dtype
- assert_raises(TypeError, np.einsum, "", 0, dtype='bad_data_type',
- optimize=do_opt)
- # other keyword arguments are rejected
- assert_raises(TypeError, np.einsum, "", 0, bad_arg=0,
- optimize=do_opt)
- # issue 4528 revealed a segfault with this call
- assert_raises(TypeError, np.einsum, *(None,)*63, optimize=do_opt)
- # number of operands must match count in subscripts string
- assert_raises(ValueError, np.einsum, "", 0, 0, optimize=do_opt)
- assert_raises(ValueError, np.einsum, ",", 0, [0], [0],
- optimize=do_opt)
- assert_raises(ValueError, np.einsum, ",", [0], optimize=do_opt)
- # can't have more subscripts than dimensions in the operand
- assert_raises(ValueError, np.einsum, "i", 0, optimize=do_opt)
- assert_raises(ValueError, np.einsum, "ij", [0, 0], optimize=do_opt)
- assert_raises(ValueError, np.einsum, "...i", 0, optimize=do_opt)
- assert_raises(ValueError, np.einsum, "i...j", [0, 0], optimize=do_opt)
- assert_raises(ValueError, np.einsum, "i...", 0, optimize=do_opt)
- assert_raises(ValueError, np.einsum, "ij...", [0, 0], optimize=do_opt)
- # invalid ellipsis
- assert_raises(ValueError, np.einsum, "i..", [0, 0], optimize=do_opt)
- assert_raises(ValueError, np.einsum, ".i...", [0, 0], optimize=do_opt)
- assert_raises(ValueError, np.einsum, "j->..j", [0, 0], optimize=do_opt)
- assert_raises(ValueError, np.einsum, "j->.j...", [0, 0], optimize=do_opt)
- # invalid subscript character
- assert_raises(ValueError, np.einsum, "i%...", [0, 0], optimize=do_opt)
- assert_raises(ValueError, np.einsum, "...j$", [0, 0], optimize=do_opt)
- assert_raises(ValueError, np.einsum, "i->&", [0, 0], optimize=do_opt)
- # output subscripts must appear in input
- assert_raises(ValueError, np.einsum, "i->ij", [0, 0], optimize=do_opt)
- # output subscripts may only be specified once
- assert_raises(ValueError, np.einsum, "ij->jij", [[0, 0], [0, 0]],
- optimize=do_opt)
- # dimensions much match when being collapsed
- assert_raises(ValueError, np.einsum, "ii",
- np.arange(6).reshape(2, 3), optimize=do_opt)
- assert_raises(ValueError, np.einsum, "ii->i",
- np.arange(6).reshape(2, 3), optimize=do_opt)
- # broadcasting to new dimensions must be enabled explicitly
- assert_raises(ValueError, np.einsum, "i", np.arange(6).reshape(2, 3),
- optimize=do_opt)
- assert_raises(ValueError, np.einsum, "i->i", [[0, 1], [0, 1]],
- out=np.arange(4).reshape(2, 2), optimize=do_opt)
- with assert_raises_regex(ValueError, "'b'"):
- # gh-11221 - 'c' erroneously appeared in the error message
- a = np.ones((3, 3, 4, 5, 6))
- b = np.ones((3, 4, 5))
- np.einsum('aabcb,abc', a, b)
- # Check order kwarg, asanyarray allows 1d to pass through
- assert_raises(ValueError, np.einsum, "i->i", np.arange(6).reshape(-1, 1),
- optimize=do_opt, order='d')
- def test_einsum_views(self):
- # pass-through
- for do_opt in [True, False]:
- a = np.arange(6)
- a.shape = (2, 3)
- b = np.einsum("...", a, optimize=do_opt)
- assert_(b.base is a)
- b = np.einsum(a, [Ellipsis], optimize=do_opt)
- assert_(b.base is a)
- b = np.einsum("ij", a, optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, a)
- b = np.einsum(a, [0, 1], optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, a)
- # output is writeable whenever input is writeable
- b = np.einsum("...", a, optimize=do_opt)
- assert_(b.flags['WRITEABLE'])
- a.flags['WRITEABLE'] = False
- b = np.einsum("...", a, optimize=do_opt)
- assert_(not b.flags['WRITEABLE'])
- # transpose
- a = np.arange(6)
- a.shape = (2, 3)
- b = np.einsum("ji", a, optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, a.T)
- b = np.einsum(a, [1, 0], optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, a.T)
- # diagonal
- a = np.arange(9)
- a.shape = (3, 3)
- b = np.einsum("ii->i", a, optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, [a[i, i] for i in range(3)])
- b = np.einsum(a, [0, 0], [0], optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, [a[i, i] for i in range(3)])
- # diagonal with various ways of broadcasting an additional dimension
- a = np.arange(27)
- a.shape = (3, 3, 3)
- b = np.einsum("...ii->...i", a, optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, [[x[i, i] for i in range(3)] for x in a])
- b = np.einsum(a, [Ellipsis, 0, 0], [Ellipsis, 0], optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, [[x[i, i] for i in range(3)] for x in a])
- b = np.einsum("ii...->...i", a, optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, [[x[i, i] for i in range(3)]
- for x in a.transpose(2, 0, 1)])
- b = np.einsum(a, [0, 0, Ellipsis], [Ellipsis, 0], optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, [[x[i, i] for i in range(3)]
- for x in a.transpose(2, 0, 1)])
- b = np.einsum("...ii->i...", a, optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, [a[:, i, i] for i in range(3)])
- b = np.einsum(a, [Ellipsis, 0, 0], [0, Ellipsis], optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, [a[:, i, i] for i in range(3)])
- b = np.einsum("jii->ij", a, optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, [a[:, i, i] for i in range(3)])
- b = np.einsum(a, [1, 0, 0], [0, 1], optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, [a[:, i, i] for i in range(3)])
- b = np.einsum("ii...->i...", a, optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)])
- b = np.einsum(a, [0, 0, Ellipsis], [0, Ellipsis], optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)])
- b = np.einsum("i...i->i...", a, optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)])
- b = np.einsum(a, [0, Ellipsis, 0], [0, Ellipsis], optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)])
- b = np.einsum("i...i->...i", a, optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, [[x[i, i] for i in range(3)]
- for x in a.transpose(1, 0, 2)])
- b = np.einsum(a, [0, Ellipsis, 0], [Ellipsis, 0], optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, [[x[i, i] for i in range(3)]
- for x in a.transpose(1, 0, 2)])
- # triple diagonal
- a = np.arange(27)
- a.shape = (3, 3, 3)
- b = np.einsum("iii->i", a, optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, [a[i, i, i] for i in range(3)])
- b = np.einsum(a, [0, 0, 0], [0], optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, [a[i, i, i] for i in range(3)])
- # swap axes
- a = np.arange(24)
- a.shape = (2, 3, 4)
- b = np.einsum("ijk->jik", a, optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, a.swapaxes(0, 1))
- b = np.einsum(a, [0, 1, 2], [1, 0, 2], optimize=do_opt)
- assert_(b.base is a)
- assert_equal(b, a.swapaxes(0, 1))
- @np._no_nep50_warning()
- def check_einsum_sums(self, dtype, do_opt=False):
- dtype = np.dtype(dtype)
- # Check various sums. Does many sizes to exercise unrolled loops.
- # sum(a, axis=-1)
- for n in range(1, 17):
- a = np.arange(n, dtype=dtype)
- assert_equal(np.einsum("i->", a, optimize=do_opt),
- np.sum(a, axis=-1).astype(dtype))
- assert_equal(np.einsum(a, [0], [], optimize=do_opt),
- np.sum(a, axis=-1).astype(dtype))
- for n in range(1, 17):
- a = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n)
- assert_equal(np.einsum("...i->...", a, optimize=do_opt),
- np.sum(a, axis=-1).astype(dtype))
- assert_equal(np.einsum(a, [Ellipsis, 0], [Ellipsis], optimize=do_opt),
- np.sum(a, axis=-1).astype(dtype))
- # sum(a, axis=0)
- for n in range(1, 17):
- a = np.arange(2*n, dtype=dtype).reshape(2, n)
- assert_equal(np.einsum("i...->...", a, optimize=do_opt),
- np.sum(a, axis=0).astype(dtype))
- assert_equal(np.einsum(a, [0, Ellipsis], [Ellipsis], optimize=do_opt),
- np.sum(a, axis=0).astype(dtype))
- for n in range(1, 17):
- a = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n)
- assert_equal(np.einsum("i...->...", a, optimize=do_opt),
- np.sum(a, axis=0).astype(dtype))
- assert_equal(np.einsum(a, [0, Ellipsis], [Ellipsis], optimize=do_opt),
- np.sum(a, axis=0).astype(dtype))
- # trace(a)
- for n in range(1, 17):
- a = np.arange(n*n, dtype=dtype).reshape(n, n)
- assert_equal(np.einsum("ii", a, optimize=do_opt),
- np.trace(a).astype(dtype))
- assert_equal(np.einsum(a, [0, 0], optimize=do_opt),
- np.trace(a).astype(dtype))
- # gh-15961: should accept numpy int64 type in subscript list
- np_array = np.asarray([0, 0])
- assert_equal(np.einsum(a, np_array, optimize=do_opt),
- np.trace(a).astype(dtype))
- assert_equal(np.einsum(a, list(np_array), optimize=do_opt),
- np.trace(a).astype(dtype))
- # multiply(a, b)
- assert_equal(np.einsum("..., ...", 3, 4), 12) # scalar case
- for n in range(1, 17):
- a = np.arange(3 * n, dtype=dtype).reshape(3, n)
- b = np.arange(2 * 3 * n, dtype=dtype).reshape(2, 3, n)
- assert_equal(np.einsum("..., ...", a, b, optimize=do_opt),
- np.multiply(a, b))
- assert_equal(np.einsum(a, [Ellipsis], b, [Ellipsis], optimize=do_opt),
- np.multiply(a, b))
- # inner(a,b)
- for n in range(1, 17):
- a = np.arange(2 * 3 * n, dtype=dtype).reshape(2, 3, n)
- b = np.arange(n, dtype=dtype)
- assert_equal(np.einsum("...i, ...i", a, b, optimize=do_opt), np.inner(a, b))
- assert_equal(np.einsum(a, [Ellipsis, 0], b, [Ellipsis, 0], optimize=do_opt),
- np.inner(a, b))
- for n in range(1, 11):
- a = np.arange(n * 3 * 2, dtype=dtype).reshape(n, 3, 2)
- b = np.arange(n, dtype=dtype)
- assert_equal(np.einsum("i..., i...", a, b, optimize=do_opt),
- np.inner(a.T, b.T).T)
- assert_equal(np.einsum(a, [0, Ellipsis], b, [0, Ellipsis], optimize=do_opt),
- np.inner(a.T, b.T).T)
- # outer(a,b)
- for n in range(1, 17):
- a = np.arange(3, dtype=dtype)+1
- b = np.arange(n, dtype=dtype)+1
- assert_equal(np.einsum("i,j", a, b, optimize=do_opt),
- np.outer(a, b))
- assert_equal(np.einsum(a, [0], b, [1], optimize=do_opt),
- np.outer(a, b))
- # Suppress the complex warnings for the 'as f8' tests
- with suppress_warnings() as sup:
- sup.filter(np.ComplexWarning)
- # matvec(a,b) / a.dot(b) where a is matrix, b is vector
- for n in range(1, 17):
- a = np.arange(4*n, dtype=dtype).reshape(4, n)
- b = np.arange(n, dtype=dtype)
- assert_equal(np.einsum("ij, j", a, b, optimize=do_opt),
- np.dot(a, b))
- assert_equal(np.einsum(a, [0, 1], b, [1], optimize=do_opt),
- np.dot(a, b))
- c = np.arange(4, dtype=dtype)
- np.einsum("ij,j", a, b, out=c,
- dtype='f8', casting='unsafe', optimize=do_opt)
- assert_equal(c,
- np.dot(a.astype('f8'),
- b.astype('f8')).astype(dtype))
- c[...] = 0
- np.einsum(a, [0, 1], b, [1], out=c,
- dtype='f8', casting='unsafe', optimize=do_opt)
- assert_equal(c,
- np.dot(a.astype('f8'),
- b.astype('f8')).astype(dtype))
- for n in range(1, 17):
- a = np.arange(4*n, dtype=dtype).reshape(4, n)
- b = np.arange(n, dtype=dtype)
- assert_equal(np.einsum("ji,j", a.T, b.T, optimize=do_opt),
- np.dot(b.T, a.T))
- assert_equal(np.einsum(a.T, [1, 0], b.T, [1], optimize=do_opt),
- np.dot(b.T, a.T))
- c = np.arange(4, dtype=dtype)
- np.einsum("ji,j", a.T, b.T, out=c,
- dtype='f8', casting='unsafe', optimize=do_opt)
- assert_equal(c,
- np.dot(b.T.astype('f8'),
- a.T.astype('f8')).astype(dtype))
- c[...] = 0
- np.einsum(a.T, [1, 0], b.T, [1], out=c,
- dtype='f8', casting='unsafe', optimize=do_opt)
- assert_equal(c,
- np.dot(b.T.astype('f8'),
- a.T.astype('f8')).astype(dtype))
- # matmat(a,b) / a.dot(b) where a is matrix, b is matrix
- for n in range(1, 17):
- if n < 8 or dtype != 'f2':
- a = np.arange(4*n, dtype=dtype).reshape(4, n)
- b = np.arange(n*6, dtype=dtype).reshape(n, 6)
- assert_equal(np.einsum("ij,jk", a, b, optimize=do_opt),
- np.dot(a, b))
- assert_equal(np.einsum(a, [0, 1], b, [1, 2], optimize=do_opt),
- np.dot(a, b))
- for n in range(1, 17):
- a = np.arange(4*n, dtype=dtype).reshape(4, n)
- b = np.arange(n*6, dtype=dtype).reshape(n, 6)
- c = np.arange(24, dtype=dtype).reshape(4, 6)
- np.einsum("ij,jk", a, b, out=c, dtype='f8', casting='unsafe',
- optimize=do_opt)
- assert_equal(c,
- np.dot(a.astype('f8'),
- b.astype('f8')).astype(dtype))
- c[...] = 0
- np.einsum(a, [0, 1], b, [1, 2], out=c,
- dtype='f8', casting='unsafe', optimize=do_opt)
- assert_equal(c,
- np.dot(a.astype('f8'),
- b.astype('f8')).astype(dtype))
- # matrix triple product (note this is not currently an efficient
- # way to multiply 3 matrices)
- a = np.arange(12, dtype=dtype).reshape(3, 4)
- b = np.arange(20, dtype=dtype).reshape(4, 5)
- c = np.arange(30, dtype=dtype).reshape(5, 6)
- if dtype != 'f2':
- assert_equal(np.einsum("ij,jk,kl", a, b, c, optimize=do_opt),
- a.dot(b).dot(c))
- assert_equal(np.einsum(a, [0, 1], b, [1, 2], c, [2, 3],
- optimize=do_opt), a.dot(b).dot(c))
- d = np.arange(18, dtype=dtype).reshape(3, 6)
- np.einsum("ij,jk,kl", a, b, c, out=d,
- dtype='f8', casting='unsafe', optimize=do_opt)
- tgt = a.astype('f8').dot(b.astype('f8'))
- tgt = tgt.dot(c.astype('f8')).astype(dtype)
- assert_equal(d, tgt)
- d[...] = 0
- np.einsum(a, [0, 1], b, [1, 2], c, [2, 3], out=d,
- dtype='f8', casting='unsafe', optimize=do_opt)
- tgt = a.astype('f8').dot(b.astype('f8'))
- tgt = tgt.dot(c.astype('f8')).astype(dtype)
- assert_equal(d, tgt)
- # tensordot(a, b)
- if np.dtype(dtype) != np.dtype('f2'):
- a = np.arange(60, dtype=dtype).reshape(3, 4, 5)
- b = np.arange(24, dtype=dtype).reshape(4, 3, 2)
- assert_equal(np.einsum("ijk, jil -> kl", a, b),
- np.tensordot(a, b, axes=([1, 0], [0, 1])))
- assert_equal(np.einsum(a, [0, 1, 2], b, [1, 0, 3], [2, 3]),
- np.tensordot(a, b, axes=([1, 0], [0, 1])))
- c = np.arange(10, dtype=dtype).reshape(5, 2)
- np.einsum("ijk,jil->kl", a, b, out=c,
- dtype='f8', casting='unsafe', optimize=do_opt)
- assert_equal(c, np.tensordot(a.astype('f8'), b.astype('f8'),
- axes=([1, 0], [0, 1])).astype(dtype))
- c[...] = 0
- np.einsum(a, [0, 1, 2], b, [1, 0, 3], [2, 3], out=c,
- dtype='f8', casting='unsafe', optimize=do_opt)
- assert_equal(c, np.tensordot(a.astype('f8'), b.astype('f8'),
- axes=([1, 0], [0, 1])).astype(dtype))
- # logical_and(logical_and(a!=0, b!=0), c!=0)
- neg_val = -2 if dtype.kind != "u" else np.iinfo(dtype).max - 1
- a = np.array([1, 3, neg_val, 0, 12, 13, 0, 1], dtype=dtype)
- b = np.array([0, 3.5, 0., neg_val, 0, 1, 3, 12], dtype=dtype)
- c = np.array([True, True, False, True, True, False, True, True])
- assert_equal(np.einsum("i,i,i->i", a, b, c,
- dtype='?', casting='unsafe', optimize=do_opt),
- np.logical_and(np.logical_and(a != 0, b != 0), c != 0))
- assert_equal(np.einsum(a, [0], b, [0], c, [0], [0],
- dtype='?', casting='unsafe'),
- np.logical_and(np.logical_and(a != 0, b != 0), c != 0))
- a = np.arange(9, dtype=dtype)
- assert_equal(np.einsum(",i->", 3, a), 3*np.sum(a))
- assert_equal(np.einsum(3, [], a, [0], []), 3*np.sum(a))
- assert_equal(np.einsum("i,->", a, 3), 3*np.sum(a))
- assert_equal(np.einsum(a, [0], 3, [], []), 3*np.sum(a))
- # Various stride0, contiguous, and SSE aligned variants
- for n in range(1, 25):
- a = np.arange(n, dtype=dtype)
- if np.dtype(dtype).itemsize > 1:
- assert_equal(np.einsum("...,...", a, a, optimize=do_opt),
- np.multiply(a, a))
- assert_equal(np.einsum("i,i", a, a, optimize=do_opt), np.dot(a, a))
- assert_equal(np.einsum("i,->i", a, 2, optimize=do_opt), 2*a)
- assert_equal(np.einsum(",i->i", 2, a, optimize=do_opt), 2*a)
- assert_equal(np.einsum("i,->", a, 2, optimize=do_opt), 2*np.sum(a))
- assert_equal(np.einsum(",i->", 2, a, optimize=do_opt), 2*np.sum(a))
- assert_equal(np.einsum("...,...", a[1:], a[:-1], optimize=do_opt),
- np.multiply(a[1:], a[:-1]))
- assert_equal(np.einsum("i,i", a[1:], a[:-1], optimize=do_opt),
- np.dot(a[1:], a[:-1]))
- assert_equal(np.einsum("i,->i", a[1:], 2, optimize=do_opt), 2*a[1:])
- assert_equal(np.einsum(",i->i", 2, a[1:], optimize=do_opt), 2*a[1:])
- assert_equal(np.einsum("i,->", a[1:], 2, optimize=do_opt),
- 2*np.sum(a[1:]))
- assert_equal(np.einsum(",i->", 2, a[1:], optimize=do_opt),
- 2*np.sum(a[1:]))
- # An object array, summed as the data type
- a = np.arange(9, dtype=object)
- b = np.einsum("i->", a, dtype=dtype, casting='unsafe')
- assert_equal(b, np.sum(a))
- assert_equal(b.dtype, np.dtype(dtype))
- b = np.einsum(a, [0], [], dtype=dtype, casting='unsafe')
- assert_equal(b, np.sum(a))
- assert_equal(b.dtype, np.dtype(dtype))
- # A case which was failing (ticket #1885)
- p = np.arange(2) + 1
- q = np.arange(4).reshape(2, 2) + 3
- r = np.arange(4).reshape(2, 2) + 7
- assert_equal(np.einsum('z,mz,zm->', p, q, r), 253)
- # singleton dimensions broadcast (gh-10343)
- p = np.ones((10,2))
- q = np.ones((1,2))
- assert_array_equal(np.einsum('ij,ij->j', p, q, optimize=True),
- np.einsum('ij,ij->j', p, q, optimize=False))
- assert_array_equal(np.einsum('ij,ij->j', p, q, optimize=True),
- [10.] * 2)
- # a blas-compatible contraction broadcasting case which was failing
- # for optimize=True (ticket #10930)
- x = np.array([2., 3.])
- y = np.array([4.])
- assert_array_equal(np.einsum("i, i", x, y, optimize=False), 20.)
- assert_array_equal(np.einsum("i, i", x, y, optimize=True), 20.)
- # all-ones array was bypassing bug (ticket #10930)
- p = np.ones((1, 5)) / 2
- q = np.ones((5, 5)) / 2
- for optimize in (True, False):
- assert_array_equal(np.einsum("...ij,...jk->...ik", p, p,
- optimize=optimize),
- np.einsum("...ij,...jk->...ik", p, q,
- optimize=optimize))
- assert_array_equal(np.einsum("...ij,...jk->...ik", p, q,
- optimize=optimize),
- np.full((1, 5), 1.25))
- # Cases which were failing (gh-10899)
- x = np.eye(2, dtype=dtype)
- y = np.ones(2, dtype=dtype)
- assert_array_equal(np.einsum("ji,i->", x, y, optimize=optimize),
- [2.]) # contig_contig_outstride0_two
- assert_array_equal(np.einsum("i,ij->", y, x, optimize=optimize),
- [2.]) # stride0_contig_outstride0_two
- assert_array_equal(np.einsum("ij,i->", x, y, optimize=optimize),
- [2.]) # contig_stride0_outstride0_two
- def test_einsum_sums_int8(self):
- self.check_einsum_sums('i1')
- def test_einsum_sums_uint8(self):
- self.check_einsum_sums('u1')
- def test_einsum_sums_int16(self):
- self.check_einsum_sums('i2')
- def test_einsum_sums_uint16(self):
- self.check_einsum_sums('u2')
- def test_einsum_sums_int32(self):
- self.check_einsum_sums('i4')
- self.check_einsum_sums('i4', True)
- def test_einsum_sums_uint32(self):
- self.check_einsum_sums('u4')
- self.check_einsum_sums('u4', True)
- def test_einsum_sums_int64(self):
- self.check_einsum_sums('i8')
- def test_einsum_sums_uint64(self):
- self.check_einsum_sums('u8')
- def test_einsum_sums_float16(self):
- self.check_einsum_sums('f2')
- def test_einsum_sums_float32(self):
- self.check_einsum_sums('f4')
- def test_einsum_sums_float64(self):
- self.check_einsum_sums('f8')
- self.check_einsum_sums('f8', True)
- def test_einsum_sums_longdouble(self):
- self.check_einsum_sums(np.longdouble)
- def test_einsum_sums_cfloat64(self):
- self.check_einsum_sums('c8')
- self.check_einsum_sums('c8', True)
- def test_einsum_sums_cfloat128(self):
- self.check_einsum_sums('c16')
- def test_einsum_sums_clongdouble(self):
- self.check_einsum_sums(np.clongdouble)
- def test_einsum_misc(self):
- # This call used to crash because of a bug in
- # PyArray_AssignZero
- a = np.ones((1, 2))
- b = np.ones((2, 2, 1))
- assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])
- assert_equal(np.einsum('ij...,j...->i...', a, b, optimize=True), [[[2], [2]]])
- # Regression test for issue #10369 (test unicode inputs with Python 2)
- assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])
- assert_equal(np.einsum('...i,...i', [1, 2, 3], [2, 3, 4]), 20)
- assert_equal(np.einsum('...i,...i', [1, 2, 3], [2, 3, 4],
- optimize='greedy'), 20)
- # The iterator had an issue with buffering this reduction
- a = np.ones((5, 12, 4, 2, 3), np.int64)
- b = np.ones((5, 12, 11), np.int64)
- assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b),
- np.einsum('ijklm,ijn->', a, b))
- assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b, optimize=True),
- np.einsum('ijklm,ijn->', a, b, optimize=True))
- # Issue #2027, was a problem in the contiguous 3-argument
- # inner loop implementation
- a = np.arange(1, 3)
- b = np.arange(1, 5).reshape(2, 2)
- c = np.arange(1, 9).reshape(4, 2)
- assert_equal(np.einsum('x,yx,zx->xzy', a, b, c),
- [[[1, 3], [3, 9], [5, 15], [7, 21]],
- [[8, 16], [16, 32], [24, 48], [32, 64]]])
- assert_equal(np.einsum('x,yx,zx->xzy', a, b, c, optimize=True),
- [[[1, 3], [3, 9], [5, 15], [7, 21]],
- [[8, 16], [16, 32], [24, 48], [32, 64]]])
- # Ensure explicitly setting out=None does not cause an error
- # see issue gh-15776 and issue gh-15256
- assert_equal(np.einsum('i,j', [1], [2], out=None), [[2]])
- def test_subscript_range(self):
- # Issue #7741, make sure that all letters of Latin alphabet (both uppercase & lowercase) can be used
- # when creating a subscript from arrays
- a = np.ones((2, 3))
- b = np.ones((3, 4))
- np.einsum(a, [0, 20], b, [20, 2], [0, 2], optimize=False)
- np.einsum(a, [0, 27], b, [27, 2], [0, 2], optimize=False)
- np.einsum(a, [0, 51], b, [51, 2], [0, 2], optimize=False)
- assert_raises(ValueError, lambda: np.einsum(a, [0, 52], b, [52, 2], [0, 2], optimize=False))
- assert_raises(ValueError, lambda: np.einsum(a, [-1, 5], b, [5, 2], [-1, 2], optimize=False))
- def test_einsum_broadcast(self):
- # Issue #2455 change in handling ellipsis
- # remove the 'middle broadcast' error
- # only use the 'RIGHT' iteration in prepare_op_axes
- # adds auto broadcast on left where it belongs
- # broadcast on right has to be explicit
- # We need to test the optimized parsing as well
- A = np.arange(2 * 3 * 4).reshape(2, 3, 4)
- B = np.arange(3)
- ref = np.einsum('ijk,j->ijk', A, B, optimize=False)
- for opt in [True, False]:
- assert_equal(np.einsum('ij...,j...->ij...', A, B, optimize=opt), ref)
- assert_equal(np.einsum('ij...,...j->ij...', A, B, optimize=opt), ref)
- assert_equal(np.einsum('ij...,j->ij...', A, B, optimize=opt), ref) # used to raise error
- A = np.arange(12).reshape((4, 3))
- B = np.arange(6).reshape((3, 2))
- ref = np.einsum('ik,kj->ij', A, B, optimize=False)
- for opt in [True, False]:
- assert_equal(np.einsum('ik...,k...->i...', A, B, optimize=opt), ref)
- assert_equal(np.einsum('ik...,...kj->i...j', A, B, optimize=opt), ref)
- assert_equal(np.einsum('...k,kj', A, B, optimize=opt), ref) # used to raise error
- assert_equal(np.einsum('ik,k...->i...', A, B, optimize=opt), ref) # used to raise error
- dims = [2, 3, 4, 5]
- a = np.arange(np.prod(dims)).reshape(dims)
- v = np.arange(dims[2])
- ref = np.einsum('ijkl,k->ijl', a, v, optimize=False)
- for opt in [True, False]:
- assert_equal(np.einsum('ijkl,k', a, v, optimize=opt), ref)
- assert_equal(np.einsum('...kl,k', a, v, optimize=opt), ref) # used to raise error
- assert_equal(np.einsum('...kl,k...', a, v, optimize=opt), ref)
- J, K, M = 160, 160, 120
- A = np.arange(J * K * M).reshape(1, 1, 1, J, K, M)
- B = np.arange(J * K * M * 3).reshape(J, K, M, 3)
- ref = np.einsum('...lmn,...lmno->...o', A, B, optimize=False)
- for opt in [True, False]:
- assert_equal(np.einsum('...lmn,lmno->...o', A, B,
- optimize=opt), ref) # used to raise error
- def test_einsum_fixedstridebug(self):
- # Issue #4485 obscure einsum bug
- # This case revealed a bug in nditer where it reported a stride
- # as 'fixed' (0) when it was in fact not fixed during processing
- # (0 or 4). The reason for the bug was that the check for a fixed
- # stride was using the information from the 2D inner loop reuse
- # to restrict the iteration dimensions it had to validate to be
- # the same, but that 2D inner loop reuse logic is only triggered
- # during the buffer copying step, and hence it was invalid to
- # rely on those values. The fix is to check all the dimensions
- # of the stride in question, which in the test case reveals that
- # the stride is not fixed.
- #
- # NOTE: This test is triggered by the fact that the default buffersize,
- # used by einsum, is 8192, and 3*2731 = 8193, is larger than that
- # and results in a mismatch between the buffering and the
- # striding for operand A.
- A = np.arange(2 * 3).reshape(2, 3).astype(np.float32)
- B = np.arange(2 * 3 * 2731).reshape(2, 3, 2731).astype(np.int16)
- es = np.einsum('cl, cpx->lpx', A, B)
- tp = np.tensordot(A, B, axes=(0, 0))
- assert_equal(es, tp)
- # The following is the original test case from the bug report,
- # made repeatable by changing random arrays to aranges.
- A = np.arange(3 * 3).reshape(3, 3).astype(np.float64)
- B = np.arange(3 * 3 * 64 * 64).reshape(3, 3, 64, 64).astype(np.float32)
- es = np.einsum('cl, cpxy->lpxy', A, B)
- tp = np.tensordot(A, B, axes=(0, 0))
- assert_equal(es, tp)
- def test_einsum_fixed_collapsingbug(self):
- # Issue #5147.
- # The bug only occurred when output argument of einssum was used.
- x = np.random.normal(0, 1, (5, 5, 5, 5))
- y1 = np.zeros((5, 5))
- np.einsum('aabb->ab', x, out=y1)
- idx = np.arange(5)
- y2 = x[idx[:, None], idx[:, None], idx, idx]
- assert_equal(y1, y2)
- def test_einsum_failed_on_p9_and_s390x(self):
- # Issues gh-14692 and gh-12689
- # Bug with signed vs unsigned char errored on power9 and s390x Linux
- tensor = np.random.random_sample((10, 10, 10, 10))
- x = np.einsum('ijij->', tensor)
- y = tensor.trace(axis1=0, axis2=2).trace()
- assert_allclose(x, y)
- def test_einsum_all_contig_non_contig_output(self):
- # Issue gh-5907, tests that the all contiguous special case
- # actually checks the contiguity of the output
- x = np.ones((5, 5))
- out = np.ones(10)[::2]
- correct_base = np.ones(10)
- correct_base[::2] = 5
- # Always worked (inner iteration is done with 0-stride):
- np.einsum('mi,mi,mi->m', x, x, x, out=out)
- assert_array_equal(out.base, correct_base)
- # Example 1:
- out = np.ones(10)[::2]
- np.einsum('im,im,im->m', x, x, x, out=out)
- assert_array_equal(out.base, correct_base)
- # Example 2, buffering causes x to be contiguous but
- # special cases do not catch the operation before:
- out = np.ones((2, 2, 2))[..., 0]
- correct_base = np.ones((2, 2, 2))
- correct_base[..., 0] = 2
- x = np.ones((2, 2), np.float32)
- np.einsum('ij,jk->ik', x, x, out=out)
- assert_array_equal(out.base, correct_base)
- @pytest.mark.parametrize("dtype",
- np.typecodes["AllFloat"] + np.typecodes["AllInteger"])
- def test_different_paths(self, dtype):
- # Test originally added to cover broken float16 path: gh-20305
- # Likely most are covered elsewhere, at least partially.
- dtype = np.dtype(dtype)
- # Simple test, designed to excersize most specialized code paths,
- # note the +0.5 for floats. This makes sure we use a float value
- # where the results must be exact.
- arr = (np.arange(7) + 0.5).astype(dtype)
- scalar = np.array(2, dtype=dtype)
- # contig -> scalar:
- res = np.einsum('i->', arr)
- assert res == arr.sum()
- # contig, contig -> contig:
- res = np.einsum('i,i->i', arr, arr)
- assert_array_equal(res, arr * arr)
- # noncontig, noncontig -> contig:
- res = np.einsum('i,i->i', arr.repeat(2)[::2], arr.repeat(2)[::2])
- assert_array_equal(res, arr * arr)
- # contig + contig -> scalar
- assert np.einsum('i,i->', arr, arr) == (arr * arr).sum()
- # contig + scalar -> contig (with out)
- out = np.ones(7, dtype=dtype)
- res = np.einsum('i,->i', arr, dtype.type(2), out=out)
- assert_array_equal(res, arr * dtype.type(2))
- # scalar + contig -> contig (with out)
- res = np.einsum(',i->i', scalar, arr)
- assert_array_equal(res, arr * dtype.type(2))
- # scalar + contig -> scalar
- res = np.einsum(',i->', scalar, arr)
- # Use einsum to compare to not have difference due to sum round-offs:
- assert res == np.einsum('i->', scalar * arr)
- # contig + scalar -> scalar
- res = np.einsum('i,->', arr, scalar)
- # Use einsum to compare to not have difference due to sum round-offs:
- assert res == np.einsum('i->', scalar * arr)
- # contig + contig + contig -> scalar
- arr = np.array([0.5, 0.5, 0.25, 4.5, 3.], dtype=dtype)
- res = np.einsum('i,i,i->', arr, arr, arr)
- assert_array_equal(res, (arr * arr * arr).sum())
- # four arrays:
- res = np.einsum('i,i,i,i->', arr, arr, arr, arr)
- assert_array_equal(res, (arr * arr * arr * arr).sum())
- def test_small_boolean_arrays(self):
- # See gh-5946.
- # Use array of True embedded in False.
- a = np.zeros((16, 1, 1), dtype=np.bool_)[:2]
- a[...] = True
- out = np.zeros((16, 1, 1), dtype=np.bool_)[:2]
- tgt = np.ones((2, 1, 1), dtype=np.bool_)
- res = np.einsum('...ij,...jk->...ik', a, a, out=out)
- assert_equal(res, tgt)
- def test_out_is_res(self):
- a = np.arange(9).reshape(3, 3)
- res = np.einsum('...ij,...jk->...ik', a, a, out=a)
- assert res is a
- def optimize_compare(self, subscripts, operands=None):
- # Tests all paths of the optimization function against
- # conventional einsum
- if operands is None:
- args = [subscripts]
- terms = subscripts.split('->')[0].split(',')
- for term in terms:
- dims = [global_size_dict[x] for x in term]
- args.append(np.random.rand(*dims))
- else:
- args = [subscripts] + operands
- noopt = np.einsum(*args, optimize=False)
- opt = np.einsum(*args, optimize='greedy')
- assert_almost_equal(opt, noopt)
- opt = np.einsum(*args, optimize='optimal')
- assert_almost_equal(opt, noopt)
- def test_hadamard_like_products(self):
- # Hadamard outer products
- self.optimize_compare('a,ab,abc->abc')
- self.optimize_compare('a,b,ab->ab')
- def test_index_transformations(self):
- # Simple index transformation cases
- self.optimize_compare('ea,fb,gc,hd,abcd->efgh')
- self.optimize_compare('ea,fb,abcd,gc,hd->efgh')
- self.optimize_compare('abcd,ea,fb,gc,hd->efgh')
- def test_complex(self):
- # Long test cases
- self.optimize_compare('acdf,jbje,gihb,hfac,gfac,gifabc,hfac')
- self.optimize_compare('acdf,jbje,gihb,hfac,gfac,gifabc,hfac')
- self.optimize_compare('cd,bdhe,aidb,hgca,gc,hgibcd,hgac')
- self.optimize_compare('abhe,hidj,jgba,hiab,gab')
- self.optimize_compare('bde,cdh,agdb,hica,ibd,hgicd,hiac')
- self.optimize_compare('chd,bde,agbc,hiad,hgc,hgi,hiad')
- self.optimize_compare('chd,bde,agbc,hiad,bdi,cgh,agdb')
- self.optimize_compare('bdhe,acad,hiab,agac,hibd')
- def test_collapse(self):
- # Inner products
- self.optimize_compare('ab,ab,c->')
- self.optimize_compare('ab,ab,c->c')
- self.optimize_compare('ab,ab,cd,cd->')
- self.optimize_compare('ab,ab,cd,cd->ac')
- self.optimize_compare('ab,ab,cd,cd->cd')
- self.optimize_compare('ab,ab,cd,cd,ef,ef->')
- def test_expand(self):
- # Outer products
- self.optimize_compare('ab,cd,ef->abcdef')
- self.optimize_compare('ab,cd,ef->acdf')
- self.optimize_compare('ab,cd,de->abcde')
- self.optimize_compare('ab,cd,de->be')
- self.optimize_compare('ab,bcd,cd->abcd')
- self.optimize_compare('ab,bcd,cd->abd')
- def test_edge_cases(self):
- # Difficult edge cases for optimization
- self.optimize_compare('eb,cb,fb->cef')
- self.optimize_compare('dd,fb,be,cdb->cef')
- self.optimize_compare('bca,cdb,dbf,afc->')
- self.optimize_compare('dcc,fce,ea,dbf->ab')
- self.optimize_compare('fdf,cdd,ccd,afe->ae')
- self.optimize_compare('abcd,ad')
- self.optimize_compare('ed,fcd,ff,bcf->be')
- self.optimize_compare('baa,dcf,af,cde->be')
- self.optimize_compare('bd,db,eac->ace')
- self.optimize_compare('fff,fae,bef,def->abd')
- self.optimize_compare('efc,dbc,acf,fd->abe')
- self.optimize_compare('ba,ac,da->bcd')
- def test_inner_product(self):
- # Inner products
- self.optimize_compare('ab,ab')
- self.optimize_compare('ab,ba')
- self.optimize_compare('abc,abc')
- self.optimize_compare('abc,bac')
- self.optimize_compare('abc,cba')
- def test_random_cases(self):
- # Randomly built test cases
- self.optimize_compare('aab,fa,df,ecc->bde')
- self.optimize_compare('ecb,fef,bad,ed->ac')
- self.optimize_compare('bcf,bbb,fbf,fc->')
- self.optimize_compare('bb,ff,be->e')
- self.optimize_compare('bcb,bb,fc,fff->')
- self.optimize_compare('fbb,dfd,fc,fc->')
- self.optimize_compare('afd,ba,cc,dc->bf')
- self.optimize_compare('adb,bc,fa,cfc->d')
- self.optimize_compare('bbd,bda,fc,db->acf')
- self.optimize_compare('dba,ead,cad->bce')
- self.optimize_compare('aef,fbc,dca->bde')
- def test_combined_views_mapping(self):
- # gh-10792
- a = np.arange(9).reshape(1, 1, 3, 1, 3)
- b = np.einsum('bbcdc->d', a)
- assert_equal(b, [12])
- def test_broadcasting_dot_cases(self):
- # Ensures broadcasting cases are not mistaken for GEMM
- a = np.random.rand(1, 5, 4)
- b = np.random.rand(4, 6)
- c = np.random.rand(5, 6)
- d = np.random.rand(10)
- self.optimize_compare('ijk,kl,jl', operands=[a, b, c])
- self.optimize_compare('ijk,kl,jl,i->i', operands=[a, b, c, d])
- e = np.random.rand(1, 1, 5, 4)
- f = np.random.rand(7, 7)
- self.optimize_compare('abjk,kl,jl', operands=[e, b, c])
- self.optimize_compare('abjk,kl,jl,ab->ab', operands=[e, b, c, f])
- # Edge case found in gh-11308
- g = np.arange(64).reshape(2, 4, 8)
- self.optimize_compare('obk,ijk->ioj', operands=[g, g])
- def test_output_order(self):
- # Ensure output order is respected for optimize cases, the below
- # conraction should yield a reshaped tensor view
- # gh-16415
- a = np.ones((2, 3, 5), order='F')
- b = np.ones((4, 3), order='F')
- for opt in [True, False]:
- tmp = np.einsum('...ft,mf->...mt', a, b, order='a', optimize=opt)
- assert_(tmp.flags.f_contiguous)
- tmp = np.einsum('...ft,mf->...mt', a, b, order='f', optimize=opt)
- assert_(tmp.flags.f_contiguous)
- tmp = np.einsum('...ft,mf->...mt', a, b, order='c', optimize=opt)
- assert_(tmp.flags.c_contiguous)
- tmp = np.einsum('...ft,mf->...mt', a, b, order='k', optimize=opt)
- assert_(tmp.flags.c_contiguous is False)
- assert_(tmp.flags.f_contiguous is False)
- tmp = np.einsum('...ft,mf->...mt', a, b, optimize=opt)
- assert_(tmp.flags.c_contiguous is False)
- assert_(tmp.flags.f_contiguous is False)
- c = np.ones((4, 3), order='C')
- for opt in [True, False]:
- tmp = np.einsum('...ft,mf->...mt', a, c, order='a', optimize=opt)
- assert_(tmp.flags.c_contiguous)
- d = np.ones((2, 3, 5), order='C')
- for opt in [True, False]:
- tmp = np.einsum('...ft,mf->...mt', d, c, order='a', optimize=opt)
- assert_(tmp.flags.c_contiguous)
- class TestEinsumPath:
- def build_operands(self, string, size_dict=global_size_dict):
- # Builds views based off initial operands
- operands = [string]
- terms = string.split('->')[0].split(',')
- for term in terms:
- dims = [size_dict[x] for x in term]
- operands.append(np.random.rand(*dims))
- return operands
- def assert_path_equal(self, comp, benchmark):
- # Checks if list of tuples are equivalent
- ret = (len(comp) == len(benchmark))
- assert_(ret)
- for pos in range(len(comp) - 1):
- ret &= isinstance(comp[pos + 1], tuple)
- ret &= (comp[pos + 1] == benchmark[pos + 1])
- assert_(ret)
- def test_memory_contraints(self):
- # Ensure memory constraints are satisfied
- outer_test = self.build_operands('a,b,c->abc')
- path, path_str = np.einsum_path(*outer_test, optimize=('greedy', 0))
- self.assert_path_equal(path, ['einsum_path', (0, 1, 2)])
- path, path_str = np.einsum_path(*outer_test, optimize=('optimal', 0))
- self.assert_path_equal(path, ['einsum_path', (0, 1, 2)])
- long_test = self.build_operands('acdf,jbje,gihb,hfac')
- path, path_str = np.einsum_path(*long_test, optimize=('greedy', 0))
- self.assert_path_equal(path, ['einsum_path', (0, 1, 2, 3)])
- path, path_str = np.einsum_path(*long_test, optimize=('optimal', 0))
- self.assert_path_equal(path, ['einsum_path', (0, 1, 2, 3)])
- def test_long_paths(self):
- # Long complex cases
- # Long test 1
- long_test1 = self.build_operands('acdf,jbje,gihb,hfac,gfac,gifabc,hfac')
- path, path_str = np.einsum_path(*long_test1, optimize='greedy')
- self.assert_path_equal(path, ['einsum_path',
- (3, 6), (3, 4), (2, 4), (2, 3), (0, 2), (0, 1)])
- path, path_str = np.einsum_path(*long_test1, optimize='optimal')
- self.assert_path_equal(path, ['einsum_path',
- (3, 6), (3, 4), (2, 4), (2, 3), (0, 2), (0, 1)])
- # Long test 2
- long_test2 = self.build_operands('chd,bde,agbc,hiad,bdi,cgh,agdb')
- path, path_str = np.einsum_path(*long_test2, optimize='greedy')
- self.assert_path_equal(path, ['einsum_path',
- (3, 4), (0, 3), (3, 4), (1, 3), (1, 2), (0, 1)])
- path, path_str = np.einsum_path(*long_test2, optimize='optimal')
- self.assert_path_equal(path, ['einsum_path',
- (0, 5), (1, 4), (3, 4), (1, 3), (1, 2), (0, 1)])
- def test_edge_paths(self):
- # Difficult edge cases
- # Edge test1
- edge_test1 = self.build_operands('eb,cb,fb->cef')
- path, path_str = np.einsum_path(*edge_test1, optimize='greedy')
- self.assert_path_equal(path, ['einsum_path', (0, 2), (0, 1)])
- path, path_str = np.einsum_path(*edge_test1, optimize='optimal')
- self.assert_path_equal(path, ['einsum_path', (0, 2), (0, 1)])
- # Edge test2
- edge_test2 = self.build_operands('dd,fb,be,cdb->cef')
- path, path_str = np.einsum_path(*edge_test2, optimize='greedy')
- self.assert_path_equal(path, ['einsum_path', (0, 3), (0, 1), (0, 1)])
- path, path_str = np.einsum_path(*edge_test2, optimize='optimal')
- self.assert_path_equal(path, ['einsum_path', (0, 3), (0, 1), (0, 1)])
- # Edge test3
- edge_test3 = self.build_operands('bca,cdb,dbf,afc->')
- path, path_str = np.einsum_path(*edge_test3, optimize='greedy')
- self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 2), (0, 1)])
- path, path_str = np.einsum_path(*edge_test3, optimize='optimal')
- self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 2), (0, 1)])
- # Edge test4
- edge_test4 = self.build_operands('dcc,fce,ea,dbf->ab')
- path, path_str = np.einsum_path(*edge_test4, optimize='greedy')
- self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 1), (0, 1)])
- path, path_str = np.einsum_path(*edge_test4, optimize='optimal')
- self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 2), (0, 1)])
- # Edge test5
- edge_test4 = self.build_operands('a,ac,ab,ad,cd,bd,bc->',
- size_dict={"a": 20, "b": 20, "c": 20, "d": 20})
- path, path_str = np.einsum_path(*edge_test4, optimize='greedy')
- self.assert_path_equal(path, ['einsum_path', (0, 1), (0, 1, 2, 3, 4, 5)])
- path, path_str = np.einsum_path(*edge_test4, optimize='optimal')
- self.assert_path_equal(path, ['einsum_path', (0, 1), (0, 1, 2, 3, 4, 5)])
- def test_path_type_input(self):
- # Test explicit path handling
- path_test = self.build_operands('dcc,fce,ea,dbf->ab')
- path, path_str = np.einsum_path(*path_test, optimize=False)
- self.assert_path_equal(path, ['einsum_path', (0, 1, 2, 3)])
- path, path_str = np.einsum_path(*path_test, optimize=True)
- self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 1), (0, 1)])
- exp_path = ['einsum_path', (0, 2), (0, 2), (0, 1)]
- path, path_str = np.einsum_path(*path_test, optimize=exp_path)
- self.assert_path_equal(path, exp_path)
- # Double check einsum works on the input path
- noopt = np.einsum(*path_test, optimize=False)
- opt = np.einsum(*path_test, optimize=exp_path)
- assert_almost_equal(noopt, opt)
- def test_path_type_input_internal_trace(self):
- #gh-20962
- path_test = self.build_operands('cab,cdd->ab')
- exp_path = ['einsum_path', (1,), (0, 1)]
- path, path_str = np.einsum_path(*path_test, optimize=exp_path)
- self.assert_path_equal(path, exp_path)
- # Double check einsum works on the input path
- noopt = np.einsum(*path_test, optimize=False)
- opt = np.einsum(*path_test, optimize=exp_path)
- assert_almost_equal(noopt, opt)
- def test_path_type_input_invalid(self):
- path_test = self.build_operands('ab,bc,cd,de->ae')
- exp_path = ['einsum_path', (2, 3), (0, 1)]
- assert_raises(RuntimeError, np.einsum, *path_test, optimize=exp_path)
- assert_raises(
- RuntimeError, np.einsum_path, *path_test, optimize=exp_path)
- path_test = self.build_operands('a,a,a->a')
- exp_path = ['einsum_path', (1,), (0, 1)]
- assert_raises(RuntimeError, np.einsum, *path_test, optimize=exp_path)
- assert_raises(
- RuntimeError, np.einsum_path, *path_test, optimize=exp_path)
- def test_spaces(self):
- #gh-10794
- arr = np.array([[1]])
- for sp in itertools.product(['', ' '], repeat=4):
- # no error for any spacing
- np.einsum('{}...a{}->{}...a{}'.format(*sp), arr)
- def test_overlap():
- a = np.arange(9, dtype=int).reshape(3, 3)
- b = np.arange(9, dtype=int).reshape(3, 3)
- d = np.dot(a, b)
- # sanity check
- c = np.einsum('ij,jk->ik', a, b)
- assert_equal(c, d)
- #gh-10080, out overlaps one of the operands
- c = np.einsum('ij,jk->ik', a, b, out=b)
- assert_equal(c, d)
|