1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- from __future__ import annotations
- from ._array_object import Array
- from ._dtypes import _result_type
- from typing import Optional, Tuple
- import numpy as np
- def argmax(x: Array, /, *, axis: Optional[int] = None, keepdims: bool = False) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.argmax <numpy.argmax>`.
- See its docstring for more information.
- """
- return Array._new(np.asarray(np.argmax(x._array, axis=axis, keepdims=keepdims)))
- def argmin(x: Array, /, *, axis: Optional[int] = None, keepdims: bool = False) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.argmin <numpy.argmin>`.
- See its docstring for more information.
- """
- return Array._new(np.asarray(np.argmin(x._array, axis=axis, keepdims=keepdims)))
- def nonzero(x: Array, /) -> Tuple[Array, ...]:
- """
- Array API compatible wrapper for :py:func:`np.nonzero <numpy.nonzero>`.
- See its docstring for more information.
- """
- return tuple(Array._new(i) for i in np.nonzero(x._array))
- def where(condition: Array, x1: Array, x2: Array, /) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.where <numpy.where>`.
- See its docstring for more information.
- """
- # Call result type here just to raise on disallowed type combinations
- _result_type(x1.dtype, x2.dtype)
- x1, x2 = Array._normalize_two_args(x1, x2)
- return Array._new(np.where(condition._array, x1._array, x2._array))
|