1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- from __future__ import annotations
- from ._array_object import Array
- from ._data_type_functions import result_type
- from typing import List, Optional, Tuple, Union
- import numpy as np
- # Note: the function name is different here
- def concat(
- arrays: Union[Tuple[Array, ...], List[Array]], /, *, axis: Optional[int] = 0
- ) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.concatenate <numpy.concatenate>`.
- See its docstring for more information.
- """
- # Note: Casting rules here are different from the np.concatenate default
- # (no for scalars with axis=None, no cross-kind casting)
- dtype = result_type(*arrays)
- arrays = tuple(a._array for a in arrays)
- return Array._new(np.concatenate(arrays, axis=axis, dtype=dtype))
- def expand_dims(x: Array, /, *, axis: int) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.expand_dims <numpy.expand_dims>`.
- See its docstring for more information.
- """
- return Array._new(np.expand_dims(x._array, axis))
- def flip(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.flip <numpy.flip>`.
- See its docstring for more information.
- """
- return Array._new(np.flip(x._array, axis=axis))
- # Note: The function name is different here (see also matrix_transpose).
- # Unlike transpose(), the axes argument is required.
- def permute_dims(x: Array, /, axes: Tuple[int, ...]) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.transpose <numpy.transpose>`.
- See its docstring for more information.
- """
- return Array._new(np.transpose(x._array, axes))
- # Note: the optional argument is called 'shape', not 'newshape'
- def reshape(x: Array, /, shape: Tuple[int, ...]) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.reshape <numpy.reshape>`.
- See its docstring for more information.
- """
- return Array._new(np.reshape(x._array, shape))
- def roll(
- x: Array,
- /,
- shift: Union[int, Tuple[int, ...]],
- *,
- axis: Optional[Union[int, Tuple[int, ...]]] = None,
- ) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.roll <numpy.roll>`.
- See its docstring for more information.
- """
- return Array._new(np.roll(x._array, shift, axis=axis))
- def squeeze(x: Array, /, axis: Union[int, Tuple[int, ...]]) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.squeeze <numpy.squeeze>`.
- See its docstring for more information.
- """
- return Array._new(np.squeeze(x._array, axis=axis))
- def stack(arrays: Union[Tuple[Array, ...], List[Array]], /, *, axis: int = 0) -> Array:
- """
- Array API compatible wrapper for :py:func:`np.stack <numpy.stack>`.
- See its docstring for more information.
- """
- # Call result type here just to raise on disallowed type combinations
- result_type(*arrays)
- arrays = tuple(a._array for a in arrays)
- return Array._new(np.stack(arrays, axis=axis))
|