__init__.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439
  1. """
  2. NumPy
  3. =====
  4. Provides
  5. 1. An array object of arbitrary homogeneous items
  6. 2. Fast mathematical operations over arrays
  7. 3. Linear Algebra, Fourier Transforms, Random Number Generation
  8. How to use the documentation
  9. ----------------------------
  10. Documentation is available in two forms: docstrings provided
  11. with the code, and a loose standing reference guide, available from
  12. `the NumPy homepage <https://numpy.org>`_.
  13. We recommend exploring the docstrings using
  14. `IPython <https://ipython.org>`_, an advanced Python shell with
  15. TAB-completion and introspection capabilities. See below for further
  16. instructions.
  17. The docstring examples assume that `numpy` has been imported as ``np``::
  18. >>> import numpy as np
  19. Code snippets are indicated by three greater-than signs::
  20. >>> x = 42
  21. >>> x = x + 1
  22. Use the built-in ``help`` function to view a function's docstring::
  23. >>> help(np.sort)
  24. ... # doctest: +SKIP
  25. For some objects, ``np.info(obj)`` may provide additional help. This is
  26. particularly true if you see the line "Help on ufunc object:" at the top
  27. of the help() page. Ufuncs are implemented in C, not Python, for speed.
  28. The native Python help() does not know how to view their help, but our
  29. np.info() function does.
  30. To search for documents containing a keyword, do::
  31. >>> np.lookfor('keyword')
  32. ... # doctest: +SKIP
  33. General-purpose documents like a glossary and help on the basic concepts
  34. of numpy are available under the ``doc`` sub-module::
  35. >>> from numpy import doc
  36. >>> help(doc)
  37. ... # doctest: +SKIP
  38. Available subpackages
  39. ---------------------
  40. lib
  41. Basic functions used by several sub-packages.
  42. random
  43. Core Random Tools
  44. linalg
  45. Core Linear Algebra Tools
  46. fft
  47. Core FFT routines
  48. polynomial
  49. Polynomial tools
  50. testing
  51. NumPy testing tools
  52. distutils
  53. Enhancements to distutils with support for
  54. Fortran compilers support and more.
  55. Utilities
  56. ---------
  57. test
  58. Run numpy unittests
  59. show_config
  60. Show numpy build configuration
  61. dual
  62. Overwrite certain functions with high-performance SciPy tools.
  63. Note: `numpy.dual` is deprecated. Use the functions from NumPy or Scipy
  64. directly instead of importing them from `numpy.dual`.
  65. matlib
  66. Make everything matrices.
  67. __version__
  68. NumPy version string
  69. Viewing documentation using IPython
  70. -----------------------------------
  71. Start IPython and import `numpy` usually under the alias ``np``: `import
  72. numpy as np`. Then, directly past or use the ``%cpaste`` magic to paste
  73. examples into the shell. To see which functions are available in `numpy`,
  74. type ``np.<TAB>`` (where ``<TAB>`` refers to the TAB key), or use
  75. ``np.*cos*?<ENTER>`` (where ``<ENTER>`` refers to the ENTER key) to narrow
  76. down the list. To view the docstring for a function, use
  77. ``np.cos?<ENTER>`` (to view the docstring) and ``np.cos??<ENTER>`` (to view
  78. the source code).
  79. Copies vs. in-place operation
  80. -----------------------------
  81. Most of the functions in `numpy` return a copy of the array argument
  82. (e.g., `np.sort`). In-place versions of these functions are often
  83. available as array methods, i.e. ``x = np.array([1,2,3]); x.sort()``.
  84. Exceptions to this rule are documented.
  85. """
  86. import sys
  87. import warnings
  88. from ._globals import (
  89. ModuleDeprecationWarning, VisibleDeprecationWarning,
  90. _NoValue, _CopyMode
  91. )
  92. # We first need to detect if we're being called as part of the numpy setup
  93. # procedure itself in a reliable manner.
  94. try:
  95. __NUMPY_SETUP__
  96. except NameError:
  97. __NUMPY_SETUP__ = False
  98. if __NUMPY_SETUP__:
  99. sys.stderr.write('Running from numpy source directory.\n')
  100. else:
  101. try:
  102. from numpy.__config__ import show as show_config
  103. except ImportError as e:
  104. msg = """Error importing numpy: you should not try to import numpy from
  105. its source directory; please exit the numpy source tree, and relaunch
  106. your python interpreter from there."""
  107. raise ImportError(msg) from e
  108. __all__ = ['ModuleDeprecationWarning',
  109. 'VisibleDeprecationWarning']
  110. # mapping of {name: (value, deprecation_msg)}
  111. __deprecated_attrs__ = {}
  112. # Allow distributors to run custom init code
  113. from . import _distributor_init
  114. from . import core
  115. from .core import *
  116. from . import compat
  117. from . import lib
  118. # NOTE: to be revisited following future namespace cleanup.
  119. # See gh-14454 and gh-15672 for discussion.
  120. from .lib import *
  121. from . import linalg
  122. from . import fft
  123. from . import polynomial
  124. from . import random
  125. from . import ctypeslib
  126. from . import ma
  127. from . import matrixlib as _mat
  128. from .matrixlib import *
  129. # Deprecations introduced in NumPy 1.20.0, 2020-06-06
  130. import builtins as _builtins
  131. _msg = (
  132. "module 'numpy' has no attribute '{n}'.\n"
  133. "`np.{n}` was a deprecated alias for the builtin `{n}`. "
  134. "To avoid this error in existing code, use `{n}` by itself. "
  135. "Doing this will not modify any behavior and is safe. {extended_msg}\n"
  136. "The aliases was originally deprecated in NumPy 1.20; for more "
  137. "details and guidance see the original release note at:\n"
  138. " https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations")
  139. _specific_msg = (
  140. "If you specifically wanted the numpy scalar type, use `np.{}` here.")
  141. _int_extended_msg = (
  142. "When replacing `np.{}`, you may wish to use e.g. `np.int64` "
  143. "or `np.int32` to specify the precision. If you wish to review "
  144. "your current use, check the release note link for "
  145. "additional information.")
  146. _type_info = [
  147. ("object", ""), # The NumPy scalar only exists by name.
  148. ("bool", _specific_msg.format("bool_")),
  149. ("float", _specific_msg.format("float64")),
  150. ("complex", _specific_msg.format("complex128")),
  151. ("str", _specific_msg.format("str_")),
  152. ("int", _int_extended_msg.format("int"))]
  153. __former_attrs__ = {
  154. n: _msg.format(n=n, extended_msg=extended_msg)
  155. for n, extended_msg in _type_info
  156. }
  157. # Future warning introduced in NumPy 1.24.0, 2022-11-17
  158. _msg = (
  159. "`np.{n}` is a deprecated alias for `{an}`. (Deprecated NumPy 1.24)")
  160. # Some of these are awkward (since `np.str` may be preferable in the long
  161. # term), but overall the names ending in 0 seem undesireable
  162. _type_info = [
  163. ("bool8", bool_, "np.bool_"),
  164. ("int0", intp, "np.intp"),
  165. ("uint0", uintp, "np.uintp"),
  166. ("str0", str_, "np.str_"),
  167. ("bytes0", bytes_, "np.bytes_"),
  168. ("void0", void, "np.void"),
  169. ("object0", object_,
  170. "`np.object0` is a deprecated alias for `np.object_`. "
  171. "`object` can be used instead. (Deprecated NumPy 1.24)")]
  172. # Some of these could be defined right away, but most were aliases to
  173. # the Python objects and only removed in NumPy 1.24. Defining them should
  174. # probably wait for NumPy 1.26 or 2.0.
  175. # When defined, these should possibly not be added to `__all__` to avoid
  176. # import with `from numpy import *`.
  177. __future_scalars__ = {"bool", "long", "ulong", "str", "bytes", "object"}
  178. __deprecated_attrs__.update({
  179. n: (alias, _msg.format(n=n, an=an)) for n, alias, an in _type_info})
  180. del _msg, _type_info
  181. from .core import round, abs, max, min
  182. # now that numpy modules are imported, can initialize limits
  183. core.getlimits._register_known_types()
  184. __all__.extend(['__version__', 'show_config'])
  185. __all__.extend(core.__all__)
  186. __all__.extend(_mat.__all__)
  187. __all__.extend(lib.__all__)
  188. __all__.extend(['linalg', 'fft', 'random', 'ctypeslib', 'ma'])
  189. # Remove one of the two occurrences of `issubdtype`, which is exposed as
  190. # both `numpy.core.issubdtype` and `numpy.lib.issubdtype`.
  191. __all__.remove('issubdtype')
  192. # These are exported by np.core, but are replaced by the builtins below
  193. # remove them to ensure that we don't end up with `np.long == np.int_`,
  194. # which would be a breaking change.
  195. del long, unicode
  196. __all__.remove('long')
  197. __all__.remove('unicode')
  198. # Remove things that are in the numpy.lib but not in the numpy namespace
  199. # Note that there is a test (numpy/tests/test_public_api.py:test_numpy_namespace)
  200. # that prevents adding more things to the main namespace by accident.
  201. # The list below will grow until the `from .lib import *` fixme above is
  202. # taken care of
  203. __all__.remove('Arrayterator')
  204. del Arrayterator
  205. # These names were removed in NumPy 1.20. For at least one release,
  206. # attempts to access these names in the numpy namespace will trigger
  207. # a warning, and calling the function will raise an exception.
  208. _financial_names = ['fv', 'ipmt', 'irr', 'mirr', 'nper', 'npv', 'pmt',
  209. 'ppmt', 'pv', 'rate']
  210. __expired_functions__ = {
  211. name: (f'In accordance with NEP 32, the function {name} was removed '
  212. 'from NumPy version 1.20. A replacement for this function '
  213. 'is available in the numpy_financial library: '
  214. 'https://pypi.org/project/numpy-financial')
  215. for name in _financial_names}
  216. # Filter out Cython harmless warnings
  217. warnings.filterwarnings("ignore", message="numpy.dtype size changed")
  218. warnings.filterwarnings("ignore", message="numpy.ufunc size changed")
  219. warnings.filterwarnings("ignore", message="numpy.ndarray size changed")
  220. # oldnumeric and numarray were removed in 1.9. In case some packages import
  221. # but do not use them, we define them here for backward compatibility.
  222. oldnumeric = 'removed'
  223. numarray = 'removed'
  224. def __getattr__(attr):
  225. # Warn for expired attributes, and return a dummy function
  226. # that always raises an exception.
  227. import warnings
  228. try:
  229. msg = __expired_functions__[attr]
  230. except KeyError:
  231. pass
  232. else:
  233. warnings.warn(msg, DeprecationWarning, stacklevel=2)
  234. def _expired(*args, **kwds):
  235. raise RuntimeError(msg)
  236. return _expired
  237. # Emit warnings for deprecated attributes
  238. try:
  239. val, msg = __deprecated_attrs__[attr]
  240. except KeyError:
  241. pass
  242. else:
  243. warnings.warn(msg, DeprecationWarning, stacklevel=2)
  244. return val
  245. if attr in __future_scalars__:
  246. # And future warnings for those that will change, but also give
  247. # the AttributeError
  248. warnings.warn(
  249. f"In the future `np.{attr}` will be defined as the "
  250. "corresponding NumPy scalar.", FutureWarning, stacklevel=2)
  251. if attr in __former_attrs__:
  252. raise AttributeError(__former_attrs__[attr])
  253. # Importing Tester requires importing all of UnitTest which is not a
  254. # cheap import Since it is mainly used in test suits, we lazy import it
  255. # here to save on the order of 10 ms of import time for most users
  256. #
  257. # The previous way Tester was imported also had a side effect of adding
  258. # the full `numpy.testing` namespace
  259. if attr == 'testing':
  260. import numpy.testing as testing
  261. return testing
  262. elif attr == 'Tester':
  263. from .testing import Tester
  264. return Tester
  265. raise AttributeError("module {!r} has no attribute "
  266. "{!r}".format(__name__, attr))
  267. def __dir__():
  268. public_symbols = globals().keys() | {'Tester', 'testing'}
  269. public_symbols -= {
  270. "core", "matrixlib",
  271. }
  272. return list(public_symbols)
  273. # Pytest testing
  274. from numpy._pytesttester import PytestTester
  275. test = PytestTester(__name__)
  276. del PytestTester
  277. def _sanity_check():
  278. """
  279. Quick sanity checks for common bugs caused by environment.
  280. There are some cases e.g. with wrong BLAS ABI that cause wrong
  281. results under specific runtime conditions that are not necessarily
  282. achieved during test suite runs, and it is useful to catch those early.
  283. See https://github.com/numpy/numpy/issues/8577 and other
  284. similar bug reports.
  285. """
  286. try:
  287. x = ones(2, dtype=float32)
  288. if not abs(x.dot(x) - float32(2.0)) < 1e-5:
  289. raise AssertionError()
  290. except AssertionError:
  291. msg = ("The current Numpy installation ({!r}) fails to "
  292. "pass simple sanity checks. This can be caused for example "
  293. "by incorrect BLAS library being linked in, or by mixing "
  294. "package managers (pip, conda, apt, ...). Search closed "
  295. "numpy issues for similar problems.")
  296. raise RuntimeError(msg.format(__file__)) from None
  297. _sanity_check()
  298. del _sanity_check
  299. def _mac_os_check():
  300. """
  301. Quick Sanity check for Mac OS look for accelerate build bugs.
  302. Testing numpy polyfit calls init_dgelsd(LAPACK)
  303. """
  304. try:
  305. c = array([3., 2., 1.])
  306. x = linspace(0, 2, 5)
  307. y = polyval(c, x)
  308. _ = polyfit(x, y, 2, cov=True)
  309. except ValueError:
  310. pass
  311. if sys.platform == "darwin":
  312. with warnings.catch_warnings(record=True) as w:
  313. _mac_os_check()
  314. # Throw runtime error, if the test failed Check for warning and error_message
  315. error_message = ""
  316. if len(w) > 0:
  317. error_message = "{}: {}".format(w[-1].category.__name__, str(w[-1].message))
  318. msg = (
  319. "Polyfit sanity test emitted a warning, most likely due "
  320. "to using a buggy Accelerate backend."
  321. "\nIf you compiled yourself, more information is available at:"
  322. "\nhttps://numpy.org/doc/stable/user/building.html#accelerated-blas-lapack-libraries"
  323. "\nOtherwise report this to the vendor "
  324. "that provided NumPy.\n{}\n".format(error_message))
  325. raise RuntimeError(msg)
  326. del _mac_os_check
  327. # We usually use madvise hugepages support, but on some old kernels it
  328. # is slow and thus better avoided.
  329. # Specifically kernel version 4.6 had a bug fix which probably fixed this:
  330. # https://github.com/torvalds/linux/commit/7cf91a98e607c2f935dbcc177d70011e95b8faff
  331. import os
  332. use_hugepage = os.environ.get("NUMPY_MADVISE_HUGEPAGE", None)
  333. if sys.platform == "linux" and use_hugepage is None:
  334. # If there is an issue with parsing the kernel version,
  335. # set use_hugepages to 0. Usage of LooseVersion will handle
  336. # the kernel version parsing better, but avoided since it
  337. # will increase the import time. See: #16679 for related discussion.
  338. try:
  339. use_hugepage = 1
  340. kernel_version = os.uname().release.split(".")[:2]
  341. kernel_version = tuple(int(v) for v in kernel_version)
  342. if kernel_version < (4, 6):
  343. use_hugepage = 0
  344. except ValueError:
  345. use_hugepages = 0
  346. elif use_hugepage is None:
  347. # This is not Linux, so it should not matter, just enable anyway
  348. use_hugepage = 1
  349. else:
  350. use_hugepage = int(use_hugepage)
  351. # Note that this will currently only make a difference on Linux
  352. core.multiarray._set_madvise_hugepage(use_hugepage)
  353. # Give a warning if NumPy is reloaded or imported on a sub-interpreter
  354. # We do this from python, since the C-module may not be reloaded and
  355. # it is tidier organized.
  356. core.multiarray._multiarray_umath._reload_guard()
  357. core._set_promotion_state(os.environ.get("NPY_PROMOTION_STATE", "legacy"))
  358. # Tell PyInstaller where to find hook-numpy.py
  359. def _pyinstaller_hooks_dir():
  360. from pathlib import Path
  361. return [str(Path(__file__).with_name("_pyinstaller").resolve())]
  362. # Remove symbols imported for internal use
  363. del os
  364. # get the version using versioneer
  365. from .version import __version__, git_revision as __git_version__
  366. # Remove symbols imported for internal use
  367. del sys, warnings