123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255 |
- import random
- from copy import copy
- import pytest
- import networkx as nx
- from networkx.utils import (
- PythonRandomInterface,
- arbitrary_element,
- create_py_random_state,
- create_random_state,
- dict_to_numpy_array,
- discrete_sequence,
- flatten,
- groups,
- make_list_of_ints,
- pairwise,
- powerlaw_sequence,
- )
- from networkx.utils.misc import _dict_to_numpy_array1, _dict_to_numpy_array2
- nested_depth = (
- 1,
- 2,
- (3, 4, ((5, 6, (7,), (8, (9, 10), 11), (12, 13, (14, 15)), 16), 17), 18, 19),
- 20,
- )
- nested_set = {
- (1, 2, 3, 4),
- (5, 6, 7, 8, 9),
- (10, 11, (12, 13, 14), (15, 16, 17, 18)),
- 19,
- 20,
- }
- nested_mixed = [
- 1,
- (2, 3, {4, (5, 6), 7}, [8, 9]),
- {10: "foo", 11: "bar", (12, 13): "baz"},
- {(14, 15): "qwe", 16: "asd"},
- (17, (18, "19"), 20),
- ]
- @pytest.mark.parametrize("result", [None, [], ["existing"], ["existing1", "existing2"]])
- @pytest.mark.parametrize("nested", [nested_depth, nested_mixed, nested_set])
- def test_flatten(nested, result):
- if result is None:
- val = flatten(nested, result)
- assert len(val) == 20
- else:
- _result = copy(result) # because pytest passes parameters as is
- nexisting = len(_result)
- val = flatten(nested, _result)
- assert len(val) == len(_result) == 20 + nexisting
- assert issubclass(type(val), tuple)
- def test_make_list_of_ints():
- mylist = [1, 2, 3.0, 42, -2]
- assert make_list_of_ints(mylist) is mylist
- assert make_list_of_ints(mylist) == mylist
- assert type(make_list_of_ints(mylist)[2]) is int
- pytest.raises(nx.NetworkXError, make_list_of_ints, [1, 2, 3, "kermit"])
- pytest.raises(nx.NetworkXError, make_list_of_ints, [1, 2, 3.1])
- def test_random_number_distribution():
- # smoke test only
- z = powerlaw_sequence(20, exponent=2.5)
- z = discrete_sequence(20, distribution=[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3])
- class TestNumpyArray:
- @classmethod
- def setup_class(cls):
- global np
- np = pytest.importorskip("numpy")
- def test_numpy_to_list_of_ints(self):
- a = np.array([1, 2, 3], dtype=np.int64)
- b = np.array([1.0, 2, 3])
- c = np.array([1.1, 2, 3])
- assert type(make_list_of_ints(a)) == list
- assert make_list_of_ints(b) == list(b)
- B = make_list_of_ints(b)
- assert type(B[0]) == int
- pytest.raises(nx.NetworkXError, make_list_of_ints, c)
- def test__dict_to_numpy_array1(self):
- d = {"a": 1, "b": 2}
- a = _dict_to_numpy_array1(d, mapping={"a": 0, "b": 1})
- np.testing.assert_allclose(a, np.array([1, 2]))
- a = _dict_to_numpy_array1(d, mapping={"b": 0, "a": 1})
- np.testing.assert_allclose(a, np.array([2, 1]))
- a = _dict_to_numpy_array1(d)
- np.testing.assert_allclose(a.sum(), 3)
- def test__dict_to_numpy_array2(self):
- d = {"a": {"a": 1, "b": 2}, "b": {"a": 10, "b": 20}}
- mapping = {"a": 1, "b": 0}
- a = _dict_to_numpy_array2(d, mapping=mapping)
- np.testing.assert_allclose(a, np.array([[20, 10], [2, 1]]))
- a = _dict_to_numpy_array2(d)
- np.testing.assert_allclose(a.sum(), 33)
- def test_dict_to_numpy_array_a(self):
- d = {"a": {"a": 1, "b": 2}, "b": {"a": 10, "b": 20}}
- mapping = {"a": 0, "b": 1}
- a = dict_to_numpy_array(d, mapping=mapping)
- np.testing.assert_allclose(a, np.array([[1, 2], [10, 20]]))
- mapping = {"a": 1, "b": 0}
- a = dict_to_numpy_array(d, mapping=mapping)
- np.testing.assert_allclose(a, np.array([[20, 10], [2, 1]]))
- a = _dict_to_numpy_array2(d)
- np.testing.assert_allclose(a.sum(), 33)
- def test_dict_to_numpy_array_b(self):
- d = {"a": 1, "b": 2}
- mapping = {"a": 0, "b": 1}
- a = dict_to_numpy_array(d, mapping=mapping)
- np.testing.assert_allclose(a, np.array([1, 2]))
- a = _dict_to_numpy_array1(d)
- np.testing.assert_allclose(a.sum(), 3)
- def test_pairwise():
- nodes = range(4)
- node_pairs = [(0, 1), (1, 2), (2, 3)]
- node_pairs_cycle = node_pairs + [(3, 0)]
- assert list(pairwise(nodes)) == node_pairs
- assert list(pairwise(iter(nodes))) == node_pairs
- assert list(pairwise(nodes, cyclic=True)) == node_pairs_cycle
- empty_iter = iter(())
- assert list(pairwise(empty_iter)) == []
- empty_iter = iter(())
- assert list(pairwise(empty_iter, cyclic=True)) == []
- def test_groups():
- many_to_one = dict(zip("abcde", [0, 0, 1, 1, 2]))
- actual = groups(many_to_one)
- expected = {0: {"a", "b"}, 1: {"c", "d"}, 2: {"e"}}
- assert actual == expected
- assert {} == groups({})
- def test_create_random_state():
- np = pytest.importorskip("numpy")
- rs = np.random.RandomState
- assert isinstance(create_random_state(1), rs)
- assert isinstance(create_random_state(None), rs)
- assert isinstance(create_random_state(np.random), rs)
- assert isinstance(create_random_state(rs(1)), rs)
- # Support for numpy.random.Generator
- rng = np.random.default_rng()
- assert isinstance(create_random_state(rng), np.random.Generator)
- pytest.raises(ValueError, create_random_state, "a")
- assert np.all(rs(1).rand(10) == create_random_state(1).rand(10))
- def test_create_py_random_state():
- pyrs = random.Random
- assert isinstance(create_py_random_state(1), pyrs)
- assert isinstance(create_py_random_state(None), pyrs)
- assert isinstance(create_py_random_state(pyrs(1)), pyrs)
- pytest.raises(ValueError, create_py_random_state, "a")
- np = pytest.importorskip("numpy")
- rs = np.random.RandomState
- rng = np.random.default_rng(1000)
- rng_explicit = np.random.Generator(np.random.SFC64())
- nprs = PythonRandomInterface
- assert isinstance(create_py_random_state(np.random), nprs)
- assert isinstance(create_py_random_state(rs(1)), nprs)
- assert isinstance(create_py_random_state(rng), nprs)
- assert isinstance(create_py_random_state(rng_explicit), nprs)
- # test default rng input
- assert isinstance(PythonRandomInterface(), nprs)
- def test_PythonRandomInterface_RandomState():
- np = pytest.importorskip("numpy")
- rs = np.random.RandomState
- rng = PythonRandomInterface(rs(42))
- rs42 = rs(42)
- # make sure these functions are same as expected outcome
- assert rng.randrange(3, 5) == rs42.randint(3, 5)
- assert rng.choice([1, 2, 3]) == rs42.choice([1, 2, 3])
- assert rng.gauss(0, 1) == rs42.normal(0, 1)
- assert rng.expovariate(1.5) == rs42.exponential(1 / 1.5)
- assert np.all(rng.shuffle([1, 2, 3]) == rs42.shuffle([1, 2, 3]))
- assert np.all(
- rng.sample([1, 2, 3], 2) == rs42.choice([1, 2, 3], (2,), replace=False)
- )
- assert np.all(
- [rng.randint(3, 5) for _ in range(100)]
- == [rs42.randint(3, 6) for _ in range(100)]
- )
- assert rng.random() == rs42.random_sample()
- def test_PythonRandomInterface_Generator():
- np = pytest.importorskip("numpy")
- rng = np.random.default_rng(42)
- pri = PythonRandomInterface(np.random.default_rng(42))
- # make sure these functions are same as expected outcome
- assert pri.randrange(3, 5) == rng.integers(3, 5)
- assert pri.choice([1, 2, 3]) == rng.choice([1, 2, 3])
- assert pri.gauss(0, 1) == rng.normal(0, 1)
- assert pri.expovariate(1.5) == rng.exponential(1 / 1.5)
- assert np.all(pri.shuffle([1, 2, 3]) == rng.shuffle([1, 2, 3]))
- assert np.all(
- pri.sample([1, 2, 3], 2) == rng.choice([1, 2, 3], (2,), replace=False)
- )
- assert np.all(
- [pri.randint(3, 5) for _ in range(100)]
- == [rng.integers(3, 6) for _ in range(100)]
- )
- assert pri.random() == rng.random()
- @pytest.mark.parametrize(
- ("iterable_type", "expected"), ((list, 1), (tuple, 1), (str, "["), (set, 1))
- )
- def test_arbitrary_element(iterable_type, expected):
- iterable = iterable_type([1, 2, 3])
- assert arbitrary_element(iterable) == expected
- @pytest.mark.parametrize(
- "iterator", ((i for i in range(3)), iter([1, 2, 3])) # generator
- )
- def test_arbitrary_element_raises(iterator):
- """Value error is raised when input is an iterator."""
- with pytest.raises(ValueError, match="from an iterator"):
- arbitrary_element(iterator)
|