123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321 |
- import pytest
- import networkx as nx
- from networkx.convert import (
- from_dict_of_dicts,
- from_dict_of_lists,
- to_dict_of_dicts,
- to_dict_of_lists,
- to_networkx_graph,
- )
- from networkx.generators.classic import barbell_graph, cycle_graph
- from networkx.utils import edges_equal, graphs_equal, nodes_equal
- class TestConvert:
- def edgelists_equal(self, e1, e2):
- return sorted(sorted(e) for e in e1) == sorted(sorted(e) for e in e2)
- def test_simple_graphs(self):
- for dest, source in [
- (to_dict_of_dicts, from_dict_of_dicts),
- (to_dict_of_lists, from_dict_of_lists),
- ]:
- G = barbell_graph(10, 3)
- G.graph = {}
- dod = dest(G)
- # Dict of [dicts, lists]
- GG = source(dod)
- assert graphs_equal(G, GG)
- GW = to_networkx_graph(dod)
- assert graphs_equal(G, GW)
- GI = nx.Graph(dod)
- assert graphs_equal(G, GI)
- # With nodelist keyword
- P4 = nx.path_graph(4)
- P3 = nx.path_graph(3)
- P4.graph = {}
- P3.graph = {}
- dod = dest(P4, nodelist=[0, 1, 2])
- Gdod = nx.Graph(dod)
- assert graphs_equal(Gdod, P3)
- def test_exceptions(self):
- # NX graph
- class G:
- adj = None
- pytest.raises(nx.NetworkXError, to_networkx_graph, G)
- # pygraphviz agraph
- class G:
- is_strict = None
- pytest.raises(nx.NetworkXError, to_networkx_graph, G)
- # Dict of [dicts, lists]
- G = {"a": 0}
- pytest.raises(TypeError, to_networkx_graph, G)
- # list or generator of edges
- class G:
- next = None
- pytest.raises(nx.NetworkXError, to_networkx_graph, G)
- # no match
- pytest.raises(nx.NetworkXError, to_networkx_graph, "a")
- def test_digraphs(self):
- for dest, source in [
- (to_dict_of_dicts, from_dict_of_dicts),
- (to_dict_of_lists, from_dict_of_lists),
- ]:
- G = cycle_graph(10)
- # Dict of [dicts, lists]
- dod = dest(G)
- GG = source(dod)
- assert nodes_equal(sorted(G.nodes()), sorted(GG.nodes()))
- assert edges_equal(sorted(G.edges()), sorted(GG.edges()))
- GW = to_networkx_graph(dod)
- assert nodes_equal(sorted(G.nodes()), sorted(GW.nodes()))
- assert edges_equal(sorted(G.edges()), sorted(GW.edges()))
- GI = nx.Graph(dod)
- assert nodes_equal(sorted(G.nodes()), sorted(GI.nodes()))
- assert edges_equal(sorted(G.edges()), sorted(GI.edges()))
- G = cycle_graph(10, create_using=nx.DiGraph)
- dod = dest(G)
- GG = source(dod, create_using=nx.DiGraph)
- assert sorted(G.nodes()) == sorted(GG.nodes())
- assert sorted(G.edges()) == sorted(GG.edges())
- GW = to_networkx_graph(dod, create_using=nx.DiGraph)
- assert sorted(G.nodes()) == sorted(GW.nodes())
- assert sorted(G.edges()) == sorted(GW.edges())
- GI = nx.DiGraph(dod)
- assert sorted(G.nodes()) == sorted(GI.nodes())
- assert sorted(G.edges()) == sorted(GI.edges())
- def test_graph(self):
- g = nx.cycle_graph(10)
- G = nx.Graph()
- G.add_nodes_from(g)
- G.add_weighted_edges_from((u, v, u) for u, v in g.edges())
- # Dict of dicts
- dod = to_dict_of_dicts(G)
- GG = from_dict_of_dicts(dod, create_using=nx.Graph)
- assert nodes_equal(sorted(G.nodes()), sorted(GG.nodes()))
- assert edges_equal(sorted(G.edges()), sorted(GG.edges()))
- GW = to_networkx_graph(dod, create_using=nx.Graph)
- assert nodes_equal(sorted(G.nodes()), sorted(GW.nodes()))
- assert edges_equal(sorted(G.edges()), sorted(GW.edges()))
- GI = nx.Graph(dod)
- assert sorted(G.nodes()) == sorted(GI.nodes())
- assert sorted(G.edges()) == sorted(GI.edges())
- # Dict of lists
- dol = to_dict_of_lists(G)
- GG = from_dict_of_lists(dol, create_using=nx.Graph)
- # dict of lists throws away edge data so set it to none
- enone = [(u, v, {}) for (u, v, d) in G.edges(data=True)]
- assert nodes_equal(sorted(G.nodes()), sorted(GG.nodes()))
- assert edges_equal(enone, sorted(GG.edges(data=True)))
- GW = to_networkx_graph(dol, create_using=nx.Graph)
- assert nodes_equal(sorted(G.nodes()), sorted(GW.nodes()))
- assert edges_equal(enone, sorted(GW.edges(data=True)))
- GI = nx.Graph(dol)
- assert nodes_equal(sorted(G.nodes()), sorted(GI.nodes()))
- assert edges_equal(enone, sorted(GI.edges(data=True)))
- def test_with_multiedges_self_loops(self):
- G = cycle_graph(10)
- XG = nx.Graph()
- XG.add_nodes_from(G)
- XG.add_weighted_edges_from((u, v, u) for u, v in G.edges())
- XGM = nx.MultiGraph()
- XGM.add_nodes_from(G)
- XGM.add_weighted_edges_from((u, v, u) for u, v in G.edges())
- XGM.add_edge(0, 1, weight=2) # multiedge
- XGS = nx.Graph()
- XGS.add_nodes_from(G)
- XGS.add_weighted_edges_from((u, v, u) for u, v in G.edges())
- XGS.add_edge(0, 0, weight=100) # self loop
- # Dict of dicts
- # with self loops, OK
- dod = to_dict_of_dicts(XGS)
- GG = from_dict_of_dicts(dod, create_using=nx.Graph)
- assert nodes_equal(XGS.nodes(), GG.nodes())
- assert edges_equal(XGS.edges(), GG.edges())
- GW = to_networkx_graph(dod, create_using=nx.Graph)
- assert nodes_equal(XGS.nodes(), GW.nodes())
- assert edges_equal(XGS.edges(), GW.edges())
- GI = nx.Graph(dod)
- assert nodes_equal(XGS.nodes(), GI.nodes())
- assert edges_equal(XGS.edges(), GI.edges())
- # Dict of lists
- # with self loops, OK
- dol = to_dict_of_lists(XGS)
- GG = from_dict_of_lists(dol, create_using=nx.Graph)
- # dict of lists throws away edge data so set it to none
- enone = [(u, v, {}) for (u, v, d) in XGS.edges(data=True)]
- assert nodes_equal(sorted(XGS.nodes()), sorted(GG.nodes()))
- assert edges_equal(enone, sorted(GG.edges(data=True)))
- GW = to_networkx_graph(dol, create_using=nx.Graph)
- assert nodes_equal(sorted(XGS.nodes()), sorted(GW.nodes()))
- assert edges_equal(enone, sorted(GW.edges(data=True)))
- GI = nx.Graph(dol)
- assert nodes_equal(sorted(XGS.nodes()), sorted(GI.nodes()))
- assert edges_equal(enone, sorted(GI.edges(data=True)))
- # Dict of dicts
- # with multiedges, OK
- dod = to_dict_of_dicts(XGM)
- GG = from_dict_of_dicts(dod, create_using=nx.MultiGraph, multigraph_input=True)
- assert nodes_equal(sorted(XGM.nodes()), sorted(GG.nodes()))
- assert edges_equal(sorted(XGM.edges()), sorted(GG.edges()))
- GW = to_networkx_graph(dod, create_using=nx.MultiGraph, multigraph_input=True)
- assert nodes_equal(sorted(XGM.nodes()), sorted(GW.nodes()))
- assert edges_equal(sorted(XGM.edges()), sorted(GW.edges()))
- GI = nx.MultiGraph(dod)
- assert nodes_equal(sorted(XGM.nodes()), sorted(GI.nodes()))
- assert sorted(XGM.edges()) == sorted(GI.edges())
- GE = from_dict_of_dicts(dod, create_using=nx.MultiGraph, multigraph_input=False)
- assert nodes_equal(sorted(XGM.nodes()), sorted(GE.nodes()))
- assert sorted(XGM.edges()) != sorted(GE.edges())
- GI = nx.MultiGraph(XGM)
- assert nodes_equal(sorted(XGM.nodes()), sorted(GI.nodes()))
- assert edges_equal(sorted(XGM.edges()), sorted(GI.edges()))
- GM = nx.MultiGraph(G)
- assert nodes_equal(sorted(GM.nodes()), sorted(G.nodes()))
- assert edges_equal(sorted(GM.edges()), sorted(G.edges()))
- # Dict of lists
- # with multiedges, OK, but better write as DiGraph else you'll
- # get double edges
- dol = to_dict_of_lists(G)
- GG = from_dict_of_lists(dol, create_using=nx.MultiGraph)
- assert nodes_equal(sorted(G.nodes()), sorted(GG.nodes()))
- assert edges_equal(sorted(G.edges()), sorted(GG.edges()))
- GW = to_networkx_graph(dol, create_using=nx.MultiGraph)
- assert nodes_equal(sorted(G.nodes()), sorted(GW.nodes()))
- assert edges_equal(sorted(G.edges()), sorted(GW.edges()))
- GI = nx.MultiGraph(dol)
- assert nodes_equal(sorted(G.nodes()), sorted(GI.nodes()))
- assert edges_equal(sorted(G.edges()), sorted(GI.edges()))
- def test_edgelists(self):
- P = nx.path_graph(4)
- e = [(0, 1), (1, 2), (2, 3)]
- G = nx.Graph(e)
- assert nodes_equal(sorted(G.nodes()), sorted(P.nodes()))
- assert edges_equal(sorted(G.edges()), sorted(P.edges()))
- assert edges_equal(sorted(G.edges(data=True)), sorted(P.edges(data=True)))
- e = [(0, 1, {}), (1, 2, {}), (2, 3, {})]
- G = nx.Graph(e)
- assert nodes_equal(sorted(G.nodes()), sorted(P.nodes()))
- assert edges_equal(sorted(G.edges()), sorted(P.edges()))
- assert edges_equal(sorted(G.edges(data=True)), sorted(P.edges(data=True)))
- e = ((n, n + 1) for n in range(3))
- G = nx.Graph(e)
- assert nodes_equal(sorted(G.nodes()), sorted(P.nodes()))
- assert edges_equal(sorted(G.edges()), sorted(P.edges()))
- assert edges_equal(sorted(G.edges(data=True)), sorted(P.edges(data=True)))
- def test_directed_to_undirected(self):
- edges1 = [(0, 1), (1, 2), (2, 0)]
- edges2 = [(0, 1), (1, 2), (0, 2)]
- assert self.edgelists_equal(nx.Graph(nx.DiGraph(edges1)).edges(), edges1)
- assert self.edgelists_equal(nx.Graph(nx.DiGraph(edges2)).edges(), edges1)
- assert self.edgelists_equal(nx.MultiGraph(nx.DiGraph(edges1)).edges(), edges1)
- assert self.edgelists_equal(nx.MultiGraph(nx.DiGraph(edges2)).edges(), edges1)
- assert self.edgelists_equal(
- nx.MultiGraph(nx.MultiDiGraph(edges1)).edges(), edges1
- )
- assert self.edgelists_equal(
- nx.MultiGraph(nx.MultiDiGraph(edges2)).edges(), edges1
- )
- assert self.edgelists_equal(nx.Graph(nx.MultiDiGraph(edges1)).edges(), edges1)
- assert self.edgelists_equal(nx.Graph(nx.MultiDiGraph(edges2)).edges(), edges1)
- def test_attribute_dict_integrity(self):
- # we must not replace dict-like graph data structures with dicts
- G = nx.Graph()
- G.add_nodes_from("abc")
- H = to_networkx_graph(G, create_using=nx.Graph)
- assert list(H.nodes) == list(G.nodes)
- H = nx.DiGraph(G)
- assert list(H.nodes) == list(G.nodes)
- def test_to_edgelist(self):
- G = nx.Graph([(1, 1)])
- elist = nx.to_edgelist(G, nodelist=list(G))
- assert edges_equal(G.edges(data=True), elist)
- def test_custom_node_attr_dict_safekeeping(self):
- class custom_dict(dict):
- pass
- class Custom(nx.Graph):
- node_attr_dict_factory = custom_dict
- g = nx.Graph()
- g.add_node(1, weight=1)
- h = Custom(g)
- assert isinstance(g._node[1], dict)
- assert isinstance(h._node[1], custom_dict)
- # this raise exception
- # h._node.update((n, dd.copy()) for n, dd in g.nodes.items())
- # assert isinstance(h._node[1], custom_dict)
- @pytest.mark.parametrize(
- "edgelist",
- (
- # Graph with no edge data
- [(0, 1), (1, 2)],
- # Graph with edge data
- [(0, 1, {"weight": 1.0}), (1, 2, {"weight": 2.0})],
- ),
- )
- def test_to_dict_of_dicts_with_edgedata_param(edgelist):
- G = nx.Graph()
- G.add_edges_from(edgelist)
- # Innermost dict value == edge_data when edge_data != None.
- # In the case when G has edge data, it is overwritten
- expected = {0: {1: 10}, 1: {0: 10, 2: 10}, 2: {1: 10}}
- assert nx.to_dict_of_dicts(G, edge_data=10) == expected
- def test_to_dict_of_dicts_with_edgedata_and_nodelist():
- G = nx.path_graph(5)
- nodelist = [2, 3, 4]
- expected = {2: {3: 10}, 3: {2: 10, 4: 10}, 4: {3: 10}}
- assert nx.to_dict_of_dicts(G, nodelist=nodelist, edge_data=10) == expected
- def test_to_dict_of_dicts_with_edgedata_multigraph():
- """Multi edge data overwritten when edge_data != None"""
- G = nx.MultiGraph()
- G.add_edge(0, 1, key="a")
- G.add_edge(0, 1, key="b")
- # Multi edge data lost when edge_data is not None
- expected = {0: {1: 10}, 1: {0: 10}}
- assert nx.to_dict_of_dicts(G, edge_data=10) == expected
- def test_to_networkx_graph_non_edgelist():
- invalid_edgelist = [1, 2, 3]
- with pytest.raises(nx.NetworkXError, match="Input is not a valid edge list"):
- nx.to_networkx_graph(invalid_edgelist)
|