123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- """
- Pajek tests
- """
- import os
- import tempfile
- import networkx as nx
- from networkx.utils import edges_equal, nodes_equal
- class TestPajek:
- @classmethod
- def setup_class(cls):
- cls.data = """*network Tralala\n*vertices 4\n 1 "A1" 0.0938 0.0896 ellipse x_fact 1 y_fact 1\n 2 "Bb" 0.8188 0.2458 ellipse x_fact 1 y_fact 1\n 3 "C" 0.3688 0.7792 ellipse x_fact 1\n 4 "D2" 0.9583 0.8563 ellipse x_fact 1\n*arcs\n1 1 1 h2 0 w 3 c Blue s 3 a1 -130 k1 0.6 a2 -130 k2 0.6 ap 0.5 l "Bezier loop" lc BlueViolet fos 20 lr 58 lp 0.3 la 360\n2 1 1 h2 0 a1 120 k1 1.3 a2 -120 k2 0.3 ap 25 l "Bezier arc" lphi 270 la 180 lr 19 lp 0.5\n1 2 1 h2 0 a1 40 k1 2.8 a2 30 k2 0.8 ap 25 l "Bezier arc" lphi 90 la 0 lp 0.65\n4 2 -1 h2 0 w 1 k1 -2 k2 250 ap 25 l "Circular arc" c Red lc OrangeRed\n3 4 1 p Dashed h2 0 w 2 c OliveGreen ap 25 l "Straight arc" lc PineGreen\n1 3 1 p Dashed h2 0 w 5 k1 -1 k2 -20 ap 25 l "Oval arc" c Brown lc Black\n3 3 -1 h1 6 w 1 h2 12 k1 -2 k2 -15 ap 0.5 l "Circular loop" c Red lc OrangeRed lphi 270 la 180"""
- cls.G = nx.MultiDiGraph()
- cls.G.add_nodes_from(["A1", "Bb", "C", "D2"])
- cls.G.add_edges_from(
- [
- ("A1", "A1"),
- ("A1", "Bb"),
- ("A1", "C"),
- ("Bb", "A1"),
- ("C", "C"),
- ("C", "D2"),
- ("D2", "Bb"),
- ]
- )
- cls.G.graph["name"] = "Tralala"
- (fd, cls.fname) = tempfile.mkstemp()
- with os.fdopen(fd, "wb") as fh:
- fh.write(cls.data.encode("UTF-8"))
- @classmethod
- def teardown_class(cls):
- os.unlink(cls.fname)
- def test_parse_pajek_simple(self):
- # Example without node positions or shape
- data = """*Vertices 2\n1 "1"\n2 "2"\n*Edges\n1 2\n2 1"""
- G = nx.parse_pajek(data)
- assert sorted(G.nodes()) == ["1", "2"]
- assert edges_equal(G.edges(), [("1", "2"), ("1", "2")])
- def test_parse_pajek(self):
- G = nx.parse_pajek(self.data)
- assert sorted(G.nodes()) == ["A1", "Bb", "C", "D2"]
- assert edges_equal(
- G.edges(),
- [
- ("A1", "A1"),
- ("A1", "Bb"),
- ("A1", "C"),
- ("Bb", "A1"),
- ("C", "C"),
- ("C", "D2"),
- ("D2", "Bb"),
- ],
- )
- def test_parse_pajet_mat(self):
- data = """*Vertices 3\n1 "one"\n2 "two"\n3 "three"\n*Matrix\n1 1 0\n0 1 0\n0 1 0\n"""
- G = nx.parse_pajek(data)
- assert set(G.nodes()) == {"one", "two", "three"}
- assert G.nodes["two"] == {"id": "2"}
- assert edges_equal(
- set(G.edges()),
- {("one", "one"), ("two", "one"), ("two", "two"), ("two", "three")},
- )
- def test_read_pajek(self):
- G = nx.parse_pajek(self.data)
- Gin = nx.read_pajek(self.fname)
- assert sorted(G.nodes()) == sorted(Gin.nodes())
- assert edges_equal(G.edges(), Gin.edges())
- assert self.G.graph == Gin.graph
- for n in G:
- assert G.nodes[n] == Gin.nodes[n]
- def test_write_pajek(self):
- import io
- G = nx.parse_pajek(self.data)
- fh = io.BytesIO()
- nx.write_pajek(G, fh)
- fh.seek(0)
- H = nx.read_pajek(fh)
- assert nodes_equal(list(G), list(H))
- assert edges_equal(list(G.edges()), list(H.edges()))
- # Graph name is left out for now, therefore it is not tested.
- # assert_equal(G.graph, H.graph)
- def test_ignored_attribute(self):
- import io
- G = nx.Graph()
- fh = io.BytesIO()
- G.add_node(1, int_attr=1)
- G.add_node(2, empty_attr=" ")
- G.add_edge(1, 2, int_attr=2)
- G.add_edge(2, 3, empty_attr=" ")
- import warnings
- with warnings.catch_warnings(record=True) as w:
- nx.write_pajek(G, fh)
- assert len(w) == 4
- def test_noname(self):
- # Make sure we can parse a line such as: *network
- # Issue #952
- line = "*network\n"
- other_lines = self.data.split("\n")[1:]
- data = line + "\n".join(other_lines)
- G = nx.parse_pajek(data)
- def test_unicode(self):
- import io
- G = nx.Graph()
- name1 = chr(2344) + chr(123) + chr(6543)
- name2 = chr(5543) + chr(1543) + chr(324)
- G.add_edge(name1, "Radiohead", foo=name2)
- fh = io.BytesIO()
- nx.write_pajek(G, fh)
- fh.seek(0)
- H = nx.read_pajek(fh)
- assert nodes_equal(list(G), list(H))
- assert edges_equal(list(G.edges()), list(H.edges()))
- assert G.graph == H.graph
|