123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242 |
- import pytest
- np = pytest.importorskip("numpy")
- pytest.importorskip("scipy")
- import networkx as nx
- from networkx.generators.degree_seq import havel_hakimi_graph
- from networkx.generators.expanders import margulis_gabber_galil_graph
- class TestLaplacian:
- @classmethod
- def setup_class(cls):
- deg = [3, 2, 2, 1, 0]
- cls.G = havel_hakimi_graph(deg)
- cls.WG = nx.Graph(
- (u, v, {"weight": 0.5, "other": 0.3}) for (u, v) in cls.G.edges()
- )
- cls.WG.add_node(4)
- cls.MG = nx.MultiGraph(cls.G)
- # Graph with clsloops
- cls.Gsl = cls.G.copy()
- for node in cls.Gsl.nodes():
- cls.Gsl.add_edge(node, node)
- def test_laplacian(self):
- "Graph Laplacian"
- # fmt: off
- NL = np.array([[ 3, -1, -1, -1, 0],
- [-1, 2, -1, 0, 0],
- [-1, -1, 2, 0, 0],
- [-1, 0, 0, 1, 0],
- [ 0, 0, 0, 0, 0]])
- # fmt: on
- WL = 0.5 * NL
- OL = 0.3 * NL
- np.testing.assert_equal(nx.laplacian_matrix(self.G).todense(), NL)
- np.testing.assert_equal(nx.laplacian_matrix(self.MG).todense(), NL)
- np.testing.assert_equal(
- nx.laplacian_matrix(self.G, nodelist=[0, 1]).todense(),
- np.array([[1, -1], [-1, 1]]),
- )
- np.testing.assert_equal(nx.laplacian_matrix(self.WG).todense(), WL)
- np.testing.assert_equal(nx.laplacian_matrix(self.WG, weight=None).todense(), NL)
- np.testing.assert_equal(
- nx.laplacian_matrix(self.WG, weight="other").todense(), OL
- )
- def test_normalized_laplacian(self):
- "Generalized Graph Laplacian"
- # fmt: off
- G = np.array([[ 1. , -0.408, -0.408, -0.577, 0.],
- [-0.408, 1. , -0.5 , 0. , 0.],
- [-0.408, -0.5 , 1. , 0. , 0.],
- [-0.577, 0. , 0. , 1. , 0.],
- [ 0. , 0. , 0. , 0. , 0.]])
- GL = np.array([[ 1. , -0.408, -0.408, -0.577, 0. ],
- [-0.408, 1. , -0.5 , 0. , 0. ],
- [-0.408, -0.5 , 1. , 0. , 0. ],
- [-0.577, 0. , 0. , 1. , 0. ],
- [ 0. , 0. , 0. , 0. , 0. ]])
- Lsl = np.array([[ 0.75 , -0.2887, -0.2887, -0.3536, 0. ],
- [-0.2887, 0.6667, -0.3333, 0. , 0. ],
- [-0.2887, -0.3333, 0.6667, 0. , 0. ],
- [-0.3536, 0. , 0. , 0.5 , 0. ],
- [ 0. , 0. , 0. , 0. , 0. ]])
- # fmt: on
- np.testing.assert_almost_equal(
- nx.normalized_laplacian_matrix(self.G, nodelist=range(5)).todense(),
- G,
- decimal=3,
- )
- np.testing.assert_almost_equal(
- nx.normalized_laplacian_matrix(self.G).todense(), GL, decimal=3
- )
- np.testing.assert_almost_equal(
- nx.normalized_laplacian_matrix(self.MG).todense(), GL, decimal=3
- )
- np.testing.assert_almost_equal(
- nx.normalized_laplacian_matrix(self.WG).todense(), GL, decimal=3
- )
- np.testing.assert_almost_equal(
- nx.normalized_laplacian_matrix(self.WG, weight="other").todense(),
- GL,
- decimal=3,
- )
- np.testing.assert_almost_equal(
- nx.normalized_laplacian_matrix(self.Gsl).todense(), Lsl, decimal=3
- )
- def test_directed_laplacian():
- "Directed Laplacian"
- # Graph used as an example in Sec. 4.1 of Langville and Meyer,
- # "Google's PageRank and Beyond". The graph contains dangling nodes, so
- # the pagerank random walk is selected by directed_laplacian
- G = nx.DiGraph()
- G.add_edges_from(
- (
- (1, 2),
- (1, 3),
- (3, 1),
- (3, 2),
- (3, 5),
- (4, 5),
- (4, 6),
- (5, 4),
- (5, 6),
- (6, 4),
- )
- )
- # fmt: off
- GL = np.array([[ 0.9833, -0.2941, -0.3882, -0.0291, -0.0231, -0.0261],
- [-0.2941, 0.8333, -0.2339, -0.0536, -0.0589, -0.0554],
- [-0.3882, -0.2339, 0.9833, -0.0278, -0.0896, -0.0251],
- [-0.0291, -0.0536, -0.0278, 0.9833, -0.4878, -0.6675],
- [-0.0231, -0.0589, -0.0896, -0.4878, 0.9833, -0.2078],
- [-0.0261, -0.0554, -0.0251, -0.6675, -0.2078, 0.9833]])
- # fmt: on
- L = nx.directed_laplacian_matrix(G, alpha=0.9, nodelist=sorted(G))
- np.testing.assert_almost_equal(L, GL, decimal=3)
- # Make the graph strongly connected, so we can use a random and lazy walk
- G.add_edges_from(((2, 5), (6, 1)))
- # fmt: off
- GL = np.array([[ 1. , -0.3062, -0.4714, 0. , 0. , -0.3227],
- [-0.3062, 1. , -0.1443, 0. , -0.3162, 0. ],
- [-0.4714, -0.1443, 1. , 0. , -0.0913, 0. ],
- [ 0. , 0. , 0. , 1. , -0.5 , -0.5 ],
- [ 0. , -0.3162, -0.0913, -0.5 , 1. , -0.25 ],
- [-0.3227, 0. , 0. , -0.5 , -0.25 , 1. ]])
- # fmt: on
- L = nx.directed_laplacian_matrix(
- G, alpha=0.9, nodelist=sorted(G), walk_type="random"
- )
- np.testing.assert_almost_equal(L, GL, decimal=3)
- # fmt: off
- GL = np.array([[ 0.5 , -0.1531, -0.2357, 0. , 0. , -0.1614],
- [-0.1531, 0.5 , -0.0722, 0. , -0.1581, 0. ],
- [-0.2357, -0.0722, 0.5 , 0. , -0.0456, 0. ],
- [ 0. , 0. , 0. , 0.5 , -0.25 , -0.25 ],
- [ 0. , -0.1581, -0.0456, -0.25 , 0.5 , -0.125 ],
- [-0.1614, 0. , 0. , -0.25 , -0.125 , 0.5 ]])
- # fmt: on
- L = nx.directed_laplacian_matrix(G, alpha=0.9, nodelist=sorted(G), walk_type="lazy")
- np.testing.assert_almost_equal(L, GL, decimal=3)
- # Make a strongly connected periodic graph
- G = nx.DiGraph()
- G.add_edges_from(((1, 2), (2, 4), (4, 1), (1, 3), (3, 4)))
- # fmt: off
- GL = np.array([[ 0.5 , -0.176, -0.176, -0.25 ],
- [-0.176, 0.5 , 0. , -0.176],
- [-0.176, 0. , 0.5 , -0.176],
- [-0.25 , -0.176, -0.176, 0.5 ]])
- # fmt: on
- L = nx.directed_laplacian_matrix(G, alpha=0.9, nodelist=sorted(G))
- np.testing.assert_almost_equal(L, GL, decimal=3)
- def test_directed_combinatorial_laplacian():
- "Directed combinatorial Laplacian"
- # Graph used as an example in Sec. 4.1 of Langville and Meyer,
- # "Google's PageRank and Beyond". The graph contains dangling nodes, so
- # the pagerank random walk is selected by directed_laplacian
- G = nx.DiGraph()
- G.add_edges_from(
- (
- (1, 2),
- (1, 3),
- (3, 1),
- (3, 2),
- (3, 5),
- (4, 5),
- (4, 6),
- (5, 4),
- (5, 6),
- (6, 4),
- )
- )
- # fmt: off
- GL = np.array([[ 0.0366, -0.0132, -0.0153, -0.0034, -0.0020, -0.0027],
- [-0.0132, 0.0450, -0.0111, -0.0076, -0.0062, -0.0069],
- [-0.0153, -0.0111, 0.0408, -0.0035, -0.0083, -0.0027],
- [-0.0034, -0.0076, -0.0035, 0.3688, -0.1356, -0.2187],
- [-0.0020, -0.0062, -0.0083, -0.1356, 0.2026, -0.0505],
- [-0.0027, -0.0069, -0.0027, -0.2187, -0.0505, 0.2815]])
- # fmt: on
- L = nx.directed_combinatorial_laplacian_matrix(G, alpha=0.9, nodelist=sorted(G))
- np.testing.assert_almost_equal(L, GL, decimal=3)
- # Make the graph strongly connected, so we can use a random and lazy walk
- G.add_edges_from(((2, 5), (6, 1)))
- # fmt: off
- GL = np.array([[ 0.1395, -0.0349, -0.0465, 0. , 0. , -0.0581],
- [-0.0349, 0.093 , -0.0116, 0. , -0.0465, 0. ],
- [-0.0465, -0.0116, 0.0698, 0. , -0.0116, 0. ],
- [ 0. , 0. , 0. , 0.2326, -0.1163, -0.1163],
- [ 0. , -0.0465, -0.0116, -0.1163, 0.2326, -0.0581],
- [-0.0581, 0. , 0. , -0.1163, -0.0581, 0.2326]])
- # fmt: on
- L = nx.directed_combinatorial_laplacian_matrix(
- G, alpha=0.9, nodelist=sorted(G), walk_type="random"
- )
- np.testing.assert_almost_equal(L, GL, decimal=3)
- # fmt: off
- GL = np.array([[ 0.0698, -0.0174, -0.0233, 0. , 0. , -0.0291],
- [-0.0174, 0.0465, -0.0058, 0. , -0.0233, 0. ],
- [-0.0233, -0.0058, 0.0349, 0. , -0.0058, 0. ],
- [ 0. , 0. , 0. , 0.1163, -0.0581, -0.0581],
- [ 0. , -0.0233, -0.0058, -0.0581, 0.1163, -0.0291],
- [-0.0291, 0. , 0. , -0.0581, -0.0291, 0.1163]])
- # fmt: on
- L = nx.directed_combinatorial_laplacian_matrix(
- G, alpha=0.9, nodelist=sorted(G), walk_type="lazy"
- )
- np.testing.assert_almost_equal(L, GL, decimal=3)
- E = nx.DiGraph(margulis_gabber_galil_graph(2))
- L = nx.directed_combinatorial_laplacian_matrix(E)
- # fmt: off
- expected = np.array(
- [[ 0.16666667, -0.08333333, -0.08333333, 0. ],
- [-0.08333333, 0.16666667, 0. , -0.08333333],
- [-0.08333333, 0. , 0.16666667, -0.08333333],
- [ 0. , -0.08333333, -0.08333333, 0.16666667]]
- )
- # fmt: on
- np.testing.assert_almost_equal(L, expected, decimal=6)
- with pytest.raises(nx.NetworkXError):
- nx.directed_combinatorial_laplacian_matrix(G, walk_type="pagerank", alpha=100)
- with pytest.raises(nx.NetworkXError):
- nx.directed_combinatorial_laplacian_matrix(G, walk_type="silly")
|