123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402 |
- from math import sqrt
- import pytest
- np = pytest.importorskip("numpy")
- import networkx as nx
- methods = ("tracemin_pcg", "tracemin_lu", "lanczos", "lobpcg")
- def test_algebraic_connectivity_tracemin_chol():
- """Test that "tracemin_chol" raises an exception."""
- pytest.importorskip("scipy")
- G = nx.barbell_graph(5, 4)
- with pytest.raises(nx.NetworkXError):
- nx.algebraic_connectivity(G, method="tracemin_chol")
- def test_fiedler_vector_tracemin_chol():
- """Test that "tracemin_chol" raises an exception."""
- pytest.importorskip("scipy")
- G = nx.barbell_graph(5, 4)
- with pytest.raises(nx.NetworkXError):
- nx.fiedler_vector(G, method="tracemin_chol")
- def test_spectral_ordering_tracemin_chol():
- """Test that "tracemin_chol" raises an exception."""
- pytest.importorskip("scipy")
- G = nx.barbell_graph(5, 4)
- with pytest.raises(nx.NetworkXError):
- nx.spectral_ordering(G, method="tracemin_chol")
- def test_fiedler_vector_tracemin_unknown():
- """Test that "tracemin_unknown" raises an exception."""
- pytest.importorskip("scipy")
- G = nx.barbell_graph(5, 4)
- L = nx.laplacian_matrix(G)
- X = np.asarray(np.random.normal(size=(1, L.shape[0]))).T
- with pytest.raises(nx.NetworkXError, match="Unknown linear system solver"):
- nx.linalg.algebraicconnectivity._tracemin_fiedler(
- L, X, normalized=False, tol=1e-8, method="tracemin_unknown"
- )
- def test_spectral_bisection():
- pytest.importorskip("scipy")
- G = nx.barbell_graph(3, 0)
- C = nx.spectral_bisection(G)
- assert C == ({0, 1, 2}, {3, 4, 5})
- mapping = dict(enumerate("badfec"))
- G = nx.relabel_nodes(G, mapping)
- C = nx.spectral_bisection(G)
- assert C == (
- {mapping[0], mapping[1], mapping[2]},
- {mapping[3], mapping[4], mapping[5]},
- )
- def check_eigenvector(A, l, x):
- nx = np.linalg.norm(x)
- # Check zeroness.
- assert nx != pytest.approx(0, abs=1e-07)
- y = A @ x
- ny = np.linalg.norm(y)
- # Check collinearity.
- assert x @ y == pytest.approx(nx * ny, abs=1e-7)
- # Check eigenvalue.
- assert ny == pytest.approx(l * nx, abs=1e-7)
- class TestAlgebraicConnectivity:
- @pytest.mark.parametrize("method", methods)
- def test_directed(self, method):
- G = nx.DiGraph()
- pytest.raises(
- nx.NetworkXNotImplemented, nx.algebraic_connectivity, G, method=method
- )
- pytest.raises(nx.NetworkXNotImplemented, nx.fiedler_vector, G, method=method)
- @pytest.mark.parametrize("method", methods)
- def test_null_and_singleton(self, method):
- G = nx.Graph()
- pytest.raises(nx.NetworkXError, nx.algebraic_connectivity, G, method=method)
- pytest.raises(nx.NetworkXError, nx.fiedler_vector, G, method=method)
- G.add_edge(0, 0)
- pytest.raises(nx.NetworkXError, nx.algebraic_connectivity, G, method=method)
- pytest.raises(nx.NetworkXError, nx.fiedler_vector, G, method=method)
- @pytest.mark.parametrize("method", methods)
- def test_disconnected(self, method):
- G = nx.Graph()
- G.add_nodes_from(range(2))
- assert nx.algebraic_connectivity(G) == 0
- pytest.raises(nx.NetworkXError, nx.fiedler_vector, G, method=method)
- G.add_edge(0, 1, weight=0)
- assert nx.algebraic_connectivity(G) == 0
- pytest.raises(nx.NetworkXError, nx.fiedler_vector, G, method=method)
- def test_unrecognized_method(self):
- pytest.importorskip("scipy")
- G = nx.path_graph(4)
- pytest.raises(nx.NetworkXError, nx.algebraic_connectivity, G, method="unknown")
- pytest.raises(nx.NetworkXError, nx.fiedler_vector, G, method="unknown")
- @pytest.mark.parametrize("method", methods)
- def test_two_nodes(self, method):
- pytest.importorskip("scipy")
- G = nx.Graph()
- G.add_edge(0, 1, weight=1)
- A = nx.laplacian_matrix(G)
- assert nx.algebraic_connectivity(G, tol=1e-12, method=method) == pytest.approx(
- 2, abs=1e-7
- )
- x = nx.fiedler_vector(G, tol=1e-12, method=method)
- check_eigenvector(A, 2, x)
- @pytest.mark.parametrize("method", methods)
- def test_two_nodes_multigraph(self, method):
- pytest.importorskip("scipy")
- G = nx.MultiGraph()
- G.add_edge(0, 0, spam=1e8)
- G.add_edge(0, 1, spam=1)
- G.add_edge(0, 1, spam=-2)
- A = -3 * nx.laplacian_matrix(G, weight="spam")
- assert nx.algebraic_connectivity(
- G, weight="spam", tol=1e-12, method=method
- ) == pytest.approx(6, abs=1e-7)
- x = nx.fiedler_vector(G, weight="spam", tol=1e-12, method=method)
- check_eigenvector(A, 6, x)
- def test_abbreviation_of_method(self):
- pytest.importorskip("scipy")
- G = nx.path_graph(8)
- A = nx.laplacian_matrix(G)
- sigma = 2 - sqrt(2 + sqrt(2))
- ac = nx.algebraic_connectivity(G, tol=1e-12, method="tracemin")
- assert ac == pytest.approx(sigma, abs=1e-7)
- x = nx.fiedler_vector(G, tol=1e-12, method="tracemin")
- check_eigenvector(A, sigma, x)
- @pytest.mark.parametrize("method", methods)
- def test_path(self, method):
- pytest.importorskip("scipy")
- G = nx.path_graph(8)
- A = nx.laplacian_matrix(G)
- sigma = 2 - sqrt(2 + sqrt(2))
- ac = nx.algebraic_connectivity(G, tol=1e-12, method=method)
- assert ac == pytest.approx(sigma, abs=1e-7)
- x = nx.fiedler_vector(G, tol=1e-12, method=method)
- check_eigenvector(A, sigma, x)
- @pytest.mark.parametrize("method", methods)
- def test_problematic_graph_issue_2381(self, method):
- pytest.importorskip("scipy")
- G = nx.path_graph(4)
- G.add_edges_from([(4, 2), (5, 1)])
- A = nx.laplacian_matrix(G)
- sigma = 0.438447187191
- ac = nx.algebraic_connectivity(G, tol=1e-12, method=method)
- assert ac == pytest.approx(sigma, abs=1e-7)
- x = nx.fiedler_vector(G, tol=1e-12, method=method)
- check_eigenvector(A, sigma, x)
- @pytest.mark.parametrize("method", methods)
- def test_cycle(self, method):
- pytest.importorskip("scipy")
- G = nx.cycle_graph(8)
- A = nx.laplacian_matrix(G)
- sigma = 2 - sqrt(2)
- ac = nx.algebraic_connectivity(G, tol=1e-12, method=method)
- assert ac == pytest.approx(sigma, abs=1e-7)
- x = nx.fiedler_vector(G, tol=1e-12, method=method)
- check_eigenvector(A, sigma, x)
- @pytest.mark.parametrize("method", methods)
- def test_seed_argument(self, method):
- pytest.importorskip("scipy")
- G = nx.cycle_graph(8)
- A = nx.laplacian_matrix(G)
- sigma = 2 - sqrt(2)
- ac = nx.algebraic_connectivity(G, tol=1e-12, method=method, seed=1)
- assert ac == pytest.approx(sigma, abs=1e-7)
- x = nx.fiedler_vector(G, tol=1e-12, method=method, seed=1)
- check_eigenvector(A, sigma, x)
- @pytest.mark.parametrize(
- ("normalized", "sigma", "laplacian_fn"),
- (
- (False, 0.2434017461399311, nx.laplacian_matrix),
- (True, 0.08113391537997749, nx.normalized_laplacian_matrix),
- ),
- )
- @pytest.mark.parametrize("method", methods)
- def test_buckminsterfullerene(self, normalized, sigma, laplacian_fn, method):
- pytest.importorskip("scipy")
- G = nx.Graph(
- [
- (1, 10),
- (1, 41),
- (1, 59),
- (2, 12),
- (2, 42),
- (2, 60),
- (3, 6),
- (3, 43),
- (3, 57),
- (4, 8),
- (4, 44),
- (4, 58),
- (5, 13),
- (5, 56),
- (5, 57),
- (6, 10),
- (6, 31),
- (7, 14),
- (7, 56),
- (7, 58),
- (8, 12),
- (8, 32),
- (9, 23),
- (9, 53),
- (9, 59),
- (10, 15),
- (11, 24),
- (11, 53),
- (11, 60),
- (12, 16),
- (13, 14),
- (13, 25),
- (14, 26),
- (15, 27),
- (15, 49),
- (16, 28),
- (16, 50),
- (17, 18),
- (17, 19),
- (17, 54),
- (18, 20),
- (18, 55),
- (19, 23),
- (19, 41),
- (20, 24),
- (20, 42),
- (21, 31),
- (21, 33),
- (21, 57),
- (22, 32),
- (22, 34),
- (22, 58),
- (23, 24),
- (25, 35),
- (25, 43),
- (26, 36),
- (26, 44),
- (27, 51),
- (27, 59),
- (28, 52),
- (28, 60),
- (29, 33),
- (29, 34),
- (29, 56),
- (30, 51),
- (30, 52),
- (30, 53),
- (31, 47),
- (32, 48),
- (33, 45),
- (34, 46),
- (35, 36),
- (35, 37),
- (36, 38),
- (37, 39),
- (37, 49),
- (38, 40),
- (38, 50),
- (39, 40),
- (39, 51),
- (40, 52),
- (41, 47),
- (42, 48),
- (43, 49),
- (44, 50),
- (45, 46),
- (45, 54),
- (46, 55),
- (47, 54),
- (48, 55),
- ]
- )
- A = laplacian_fn(G)
- try:
- assert nx.algebraic_connectivity(
- G, normalized=normalized, tol=1e-12, method=method
- ) == pytest.approx(sigma, abs=1e-7)
- x = nx.fiedler_vector(G, normalized=normalized, tol=1e-12, method=method)
- check_eigenvector(A, sigma, x)
- except nx.NetworkXError as err:
- if err.args not in (
- ("Cholesky solver unavailable.",),
- ("LU solver unavailable.",),
- ):
- raise
- class TestSpectralOrdering:
- _graphs = (nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph)
- @pytest.mark.parametrize("graph", _graphs)
- def test_nullgraph(self, graph):
- G = graph()
- pytest.raises(nx.NetworkXError, nx.spectral_ordering, G)
- @pytest.mark.parametrize("graph", _graphs)
- def test_singleton(self, graph):
- G = graph()
- G.add_node("x")
- assert nx.spectral_ordering(G) == ["x"]
- G.add_edge("x", "x", weight=33)
- G.add_edge("x", "x", weight=33)
- assert nx.spectral_ordering(G) == ["x"]
- def test_unrecognized_method(self):
- G = nx.path_graph(4)
- pytest.raises(nx.NetworkXError, nx.spectral_ordering, G, method="unknown")
- @pytest.mark.parametrize("method", methods)
- def test_three_nodes(self, method):
- pytest.importorskip("scipy")
- G = nx.Graph()
- G.add_weighted_edges_from([(1, 2, 1), (1, 3, 2), (2, 3, 1)], weight="spam")
- order = nx.spectral_ordering(G, weight="spam", method=method)
- assert set(order) == set(G)
- assert {1, 3} in (set(order[:-1]), set(order[1:]))
- @pytest.mark.parametrize("method", methods)
- def test_three_nodes_multigraph(self, method):
- pytest.importorskip("scipy")
- G = nx.MultiDiGraph()
- G.add_weighted_edges_from([(1, 2, 1), (1, 3, 2), (2, 3, 1), (2, 3, 2)])
- order = nx.spectral_ordering(G, method=method)
- assert set(order) == set(G)
- assert {2, 3} in (set(order[:-1]), set(order[1:]))
- @pytest.mark.parametrize("method", methods)
- def test_path(self, method):
- pytest.importorskip("scipy")
- path = list(range(10))
- np.random.shuffle(path)
- G = nx.Graph()
- nx.add_path(G, path)
- order = nx.spectral_ordering(G, method=method)
- assert order in [path, list(reversed(path))]
- @pytest.mark.parametrize("method", methods)
- def test_seed_argument(self, method):
- pytest.importorskip("scipy")
- path = list(range(10))
- np.random.shuffle(path)
- G = nx.Graph()
- nx.add_path(G, path)
- order = nx.spectral_ordering(G, method=method, seed=1)
- assert order in [path, list(reversed(path))]
- @pytest.mark.parametrize("method", methods)
- def test_disconnected(self, method):
- pytest.importorskip("scipy")
- G = nx.Graph()
- nx.add_path(G, range(0, 10, 2))
- nx.add_path(G, range(1, 10, 2))
- order = nx.spectral_ordering(G, method=method)
- assert set(order) == set(G)
- seqs = [
- list(range(0, 10, 2)),
- list(range(8, -1, -2)),
- list(range(1, 10, 2)),
- list(range(9, -1, -2)),
- ]
- assert order[:5] in seqs
- assert order[5:] in seqs
- @pytest.mark.parametrize(
- ("normalized", "expected_order"),
- (
- (False, [[1, 2, 0, 3, 4, 5, 6, 9, 7, 8], [8, 7, 9, 6, 5, 4, 3, 0, 2, 1]]),
- (True, [[1, 2, 3, 0, 4, 5, 9, 6, 7, 8], [8, 7, 6, 9, 5, 4, 0, 3, 2, 1]]),
- ),
- )
- @pytest.mark.parametrize("method", methods)
- def test_cycle(self, normalized, expected_order, method):
- pytest.importorskip("scipy")
- path = list(range(10))
- G = nx.Graph()
- nx.add_path(G, path, weight=5)
- G.add_edge(path[-1], path[0], weight=1)
- A = nx.laplacian_matrix(G).todense()
- order = nx.spectral_ordering(G, normalized=normalized, method=method)
- assert order in expected_order
|