123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203 |
- """Provides explicit constructions of expander graphs.
- """
- import itertools
- import networkx as nx
- __all__ = ["margulis_gabber_galil_graph", "chordal_cycle_graph", "paley_graph"]
- # Other discrete torus expanders can be constructed by using the following edge
- # sets. For more information, see Chapter 4, "Expander Graphs", in
- # "Pseudorandomness", by Salil Vadhan.
- #
- # For a directed expander, add edges from (x, y) to:
- #
- # (x, y),
- # ((x + 1) % n, y),
- # (x, (y + 1) % n),
- # (x, (x + y) % n),
- # (-y % n, x)
- #
- # For an undirected expander, add the reverse edges.
- #
- # Also appearing in the paper of Gabber and Galil:
- #
- # (x, y),
- # (x, (x + y) % n),
- # (x, (x + y + 1) % n),
- # ((x + y) % n, y),
- # ((x + y + 1) % n, y)
- #
- # and:
- #
- # (x, y),
- # ((x + 2*y) % n, y),
- # ((x + (2*y + 1)) % n, y),
- # ((x + (2*y + 2)) % n, y),
- # (x, (y + 2*x) % n),
- # (x, (y + (2*x + 1)) % n),
- # (x, (y + (2*x + 2)) % n),
- #
- def margulis_gabber_galil_graph(n, create_using=None):
- r"""Returns the Margulis-Gabber-Galil undirected MultiGraph on `n^2` nodes.
- The undirected MultiGraph is regular with degree `8`. Nodes are integer
- pairs. The second-largest eigenvalue of the adjacency matrix of the graph
- is at most `5 \sqrt{2}`, regardless of `n`.
- Parameters
- ----------
- n : int
- Determines the number of nodes in the graph: `n^2`.
- create_using : NetworkX graph constructor, optional (default MultiGraph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : graph
- The constructed undirected multigraph.
- Raises
- ------
- NetworkXError
- If the graph is directed or not a multigraph.
- """
- G = nx.empty_graph(0, create_using, default=nx.MultiGraph)
- if G.is_directed() or not G.is_multigraph():
- msg = "`create_using` must be an undirected multigraph."
- raise nx.NetworkXError(msg)
- for x, y in itertools.product(range(n), repeat=2):
- for u, v in (
- ((x + 2 * y) % n, y),
- ((x + (2 * y + 1)) % n, y),
- (x, (y + 2 * x) % n),
- (x, (y + (2 * x + 1)) % n),
- ):
- G.add_edge((x, y), (u, v))
- G.graph["name"] = f"margulis_gabber_galil_graph({n})"
- return G
- def chordal_cycle_graph(p, create_using=None):
- """Returns the chordal cycle graph on `p` nodes.
- The returned graph is a cycle graph on `p` nodes with chords joining each
- vertex `x` to its inverse modulo `p`. This graph is a (mildly explicit)
- 3-regular expander [1]_.
- `p` *must* be a prime number.
- Parameters
- ----------
- p : a prime number
- The number of vertices in the graph. This also indicates where the
- chordal edges in the cycle will be created.
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : graph
- The constructed undirected multigraph.
- Raises
- ------
- NetworkXError
- If `create_using` indicates directed or not a multigraph.
- References
- ----------
- .. [1] Theorem 4.4.2 in A. Lubotzky. "Discrete groups, expanding graphs and
- invariant measures", volume 125 of Progress in Mathematics.
- Birkhäuser Verlag, Basel, 1994.
- """
- G = nx.empty_graph(0, create_using, default=nx.MultiGraph)
- if G.is_directed() or not G.is_multigraph():
- msg = "`create_using` must be an undirected multigraph."
- raise nx.NetworkXError(msg)
- for x in range(p):
- left = (x - 1) % p
- right = (x + 1) % p
- # Here we apply Fermat's Little Theorem to compute the multiplicative
- # inverse of x in Z/pZ. By Fermat's Little Theorem,
- #
- # x^p = x (mod p)
- #
- # Therefore,
- #
- # x * x^(p - 2) = 1 (mod p)
- #
- # The number 0 is a special case: we just let its inverse be itself.
- chord = pow(x, p - 2, p) if x > 0 else 0
- for y in (left, right, chord):
- G.add_edge(x, y)
- G.graph["name"] = f"chordal_cycle_graph({p})"
- return G
- def paley_graph(p, create_using=None):
- r"""Returns the Paley $\frac{(p-1)}{2}$ -regular graph on $p$ nodes.
- The returned graph is a graph on $\mathbb{Z}/p\mathbb{Z}$ with edges between $x$ and $y$
- if and only if $x-y$ is a nonzero square in $\mathbb{Z}/p\mathbb{Z}$.
- If $p \equiv 1 \pmod 4$, $-1$ is a square in $\mathbb{Z}/p\mathbb{Z}$ and therefore $x-y$ is a square if and
- only if $y-x$ is also a square, i.e the edges in the Paley graph are symmetric.
- If $p \equiv 3 \pmod 4$, $-1$ is not a square in $\mathbb{Z}/p\mathbb{Z}$ and therefore either $x-y$ or $y-x$
- is a square in $\mathbb{Z}/p\mathbb{Z}$ but not both.
- Note that a more general definition of Paley graphs extends this construction
- to graphs over $q=p^n$ vertices, by using the finite field $F_q$ instead of $\mathbb{Z}/p\mathbb{Z}$.
- This construction requires to compute squares in general finite fields and is
- not what is implemented here (i.e `paley_graph(25)` does not return the true
- Paley graph associated with $5^2$).
- Parameters
- ----------
- p : int, an odd prime number.
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Returns
- -------
- G : graph
- The constructed directed graph.
- Raises
- ------
- NetworkXError
- If the graph is a multigraph.
- References
- ----------
- Chapter 13 in B. Bollobas, Random Graphs. Second edition.
- Cambridge Studies in Advanced Mathematics, 73.
- Cambridge University Press, Cambridge (2001).
- """
- G = nx.empty_graph(0, create_using, default=nx.DiGraph)
- if G.is_multigraph():
- msg = "`create_using` cannot be a multigraph."
- raise nx.NetworkXError(msg)
- # Compute the squares in Z/pZ.
- # Make it a set to uniquify (there are exactly (p-1)/2 squares in Z/pZ
- # when is prime).
- square_set = {(x**2) % p for x in range(1, p) if (x**2) % p != 0}
- for x in range(p):
- for x2 in square_set:
- G.add_edge(x, (x + x2) % p)
- G.graph["name"] = f"paley({p})"
- return G
|