1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162 |
- """Functions to convert NetworkX graphs to and from common data containers
- like numpy arrays, scipy sparse arrays, and pandas DataFrames.
- The preferred way of converting data to a NetworkX graph is through the
- graph constructor. The constructor calls the `~networkx.convert.to_networkx_graph`
- function which attempts to guess the input type and convert it automatically.
- Examples
- --------
- Create a 10 node random graph from a numpy array
- >>> import numpy as np
- >>> rng = np.random.default_rng()
- >>> a = rng.integers(low=0, high=2, size=(10, 10))
- >>> DG = nx.from_numpy_array(a, create_using=nx.DiGraph)
- or equivalently:
- >>> DG = nx.DiGraph(a)
- which calls `from_numpy_array` internally based on the type of ``a``.
- See Also
- --------
- nx_agraph, nx_pydot
- """
- import itertools
- from collections import defaultdict
- import networkx as nx
- from networkx.utils import not_implemented_for
- __all__ = [
- "from_pandas_adjacency",
- "to_pandas_adjacency",
- "from_pandas_edgelist",
- "to_pandas_edgelist",
- "from_scipy_sparse_array",
- "to_scipy_sparse_array",
- "from_numpy_array",
- "to_numpy_array",
- ]
- def to_pandas_adjacency(
- G,
- nodelist=None,
- dtype=None,
- order=None,
- multigraph_weight=sum,
- weight="weight",
- nonedge=0.0,
- ):
- """Returns the graph adjacency matrix as a Pandas DataFrame.
- Parameters
- ----------
- G : graph
- The NetworkX graph used to construct the Pandas DataFrame.
- nodelist : list, optional
- The rows and columns are ordered according to the nodes in `nodelist`.
- If `nodelist` is None, then the ordering is produced by G.nodes().
- multigraph_weight : {sum, min, max}, optional
- An operator that determines how weights in multigraphs are handled.
- The default is to sum the weights of the multiple edges.
- weight : string or None, optional
- The edge attribute that holds the numerical value used for
- the edge weight. If an edge does not have that attribute, then the
- value 1 is used instead.
- nonedge : float, optional
- The matrix values corresponding to nonedges are typically set to zero.
- However, this could be undesirable if there are matrix values
- corresponding to actual edges that also have the value zero. If so,
- one might prefer nonedges to have some other value, such as nan.
- Returns
- -------
- df : Pandas DataFrame
- Graph adjacency matrix
- Notes
- -----
- For directed graphs, entry i,j corresponds to an edge from i to j.
- The DataFrame entries are assigned to the weight edge attribute. When
- an edge does not have a weight attribute, the value of the entry is set to
- the number 1. For multiple (parallel) edges, the values of the entries
- are determined by the 'multigraph_weight' parameter. The default is to
- sum the weight attributes for each of the parallel edges.
- When `nodelist` does not contain every node in `G`, the matrix is built
- from the subgraph of `G` that is induced by the nodes in `nodelist`.
- The convention used for self-loop edges in graphs is to assign the
- diagonal matrix entry value to the weight attribute of the edge
- (or the number 1 if the edge has no weight attribute). If the
- alternate convention of doubling the edge weight is desired the
- resulting Pandas DataFrame can be modified as follows:
- >>> import pandas as pd
- >>> pd.options.display.max_columns = 20
- >>> import numpy as np
- >>> G = nx.Graph([(1, 1)])
- >>> df = nx.to_pandas_adjacency(G, dtype=int)
- >>> df
- 1
- 1 1
- >>> df.values[np.diag_indices_from(df)] *= 2
- >>> df
- 1
- 1 2
- Examples
- --------
- >>> G = nx.MultiDiGraph()
- >>> G.add_edge(0, 1, weight=2)
- 0
- >>> G.add_edge(1, 0)
- 0
- >>> G.add_edge(2, 2, weight=3)
- 0
- >>> G.add_edge(2, 2)
- 1
- >>> nx.to_pandas_adjacency(G, nodelist=[0, 1, 2], dtype=int)
- 0 1 2
- 0 0 2 0
- 1 1 0 0
- 2 0 0 4
- """
- import pandas as pd
- M = to_numpy_array(
- G,
- nodelist=nodelist,
- dtype=dtype,
- order=order,
- multigraph_weight=multigraph_weight,
- weight=weight,
- nonedge=nonedge,
- )
- if nodelist is None:
- nodelist = list(G)
- return pd.DataFrame(data=M, index=nodelist, columns=nodelist)
- def from_pandas_adjacency(df, create_using=None):
- r"""Returns a graph from Pandas DataFrame.
- The Pandas DataFrame is interpreted as an adjacency matrix for the graph.
- Parameters
- ----------
- df : Pandas DataFrame
- An adjacency matrix representation of a graph
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Notes
- -----
- For directed graphs, explicitly mention create_using=nx.DiGraph,
- and entry i,j of df corresponds to an edge from i to j.
- If `df` has a single data type for each entry it will be converted to an
- appropriate Python data type.
- If `df` has a user-specified compound data type the names
- of the data fields will be used as attribute keys in the resulting
- NetworkX graph.
- See Also
- --------
- to_pandas_adjacency
- Examples
- --------
- Simple integer weights on edges:
- >>> import pandas as pd
- >>> pd.options.display.max_columns = 20
- >>> df = pd.DataFrame([[1, 1], [2, 1]])
- >>> df
- 0 1
- 0 1 1
- 1 2 1
- >>> G = nx.from_pandas_adjacency(df)
- >>> G.name = "Graph from pandas adjacency matrix"
- >>> print(G)
- Graph named 'Graph from pandas adjacency matrix' with 2 nodes and 3 edges
- """
- try:
- df = df[df.index]
- except Exception as err:
- missing = list(set(df.index).difference(set(df.columns)))
- msg = f"{missing} not in columns"
- raise nx.NetworkXError("Columns must match Indices.", msg) from err
- A = df.values
- G = from_numpy_array(A, create_using=create_using)
- nx.relabel.relabel_nodes(G, dict(enumerate(df.columns)), copy=False)
- return G
- def to_pandas_edgelist(
- G,
- source="source",
- target="target",
- nodelist=None,
- dtype=None,
- edge_key=None,
- ):
- """Returns the graph edge list as a Pandas DataFrame.
- Parameters
- ----------
- G : graph
- The NetworkX graph used to construct the Pandas DataFrame.
- source : str or int, optional
- A valid column name (string or integer) for the source nodes (for the
- directed case).
- target : str or int, optional
- A valid column name (string or integer) for the target nodes (for the
- directed case).
- nodelist : list, optional
- Use only nodes specified in nodelist
- dtype : dtype, default None
- Use to create the DataFrame. Data type to force.
- Only a single dtype is allowed. If None, infer.
- edge_key : str or int or None, optional (default=None)
- A valid column name (string or integer) for the edge keys (for the
- multigraph case). If None, edge keys are not stored in the DataFrame.
- Returns
- -------
- df : Pandas DataFrame
- Graph edge list
- Examples
- --------
- >>> G = nx.Graph(
- ... [
- ... ("A", "B", {"cost": 1, "weight": 7}),
- ... ("C", "E", {"cost": 9, "weight": 10}),
- ... ]
- ... )
- >>> df = nx.to_pandas_edgelist(G, nodelist=["A", "C"])
- >>> df[["source", "target", "cost", "weight"]]
- source target cost weight
- 0 A B 1 7
- 1 C E 9 10
- >>> G = nx.MultiGraph([('A', 'B', {'cost': 1}), ('A', 'B', {'cost': 9})])
- >>> df = nx.to_pandas_edgelist(G, nodelist=['A', 'C'], edge_key='ekey')
- >>> df[['source', 'target', 'cost', 'ekey']]
- source target cost ekey
- 0 A B 1 0
- 1 A B 9 1
- """
- import pandas as pd
- if nodelist is None:
- edgelist = G.edges(data=True)
- else:
- edgelist = G.edges(nodelist, data=True)
- source_nodes = [s for s, _, _ in edgelist]
- target_nodes = [t for _, t, _ in edgelist]
- all_attrs = set().union(*(d.keys() for _, _, d in edgelist))
- if source in all_attrs:
- raise nx.NetworkXError(f"Source name {source!r} is an edge attr name")
- if target in all_attrs:
- raise nx.NetworkXError(f"Target name {target!r} is an edge attr name")
- nan = float("nan")
- edge_attr = {k: [d.get(k, nan) for _, _, d in edgelist] for k in all_attrs}
- if G.is_multigraph() and edge_key is not None:
- if edge_key in all_attrs:
- raise nx.NetworkXError(f"Edge key name {edge_key!r} is an edge attr name")
- edge_keys = [k for _, _, k in G.edges(keys=True)]
- edgelistdict = {source: source_nodes, target: target_nodes, edge_key: edge_keys}
- else:
- edgelistdict = {source: source_nodes, target: target_nodes}
- edgelistdict.update(edge_attr)
- return pd.DataFrame(edgelistdict, dtype=dtype)
- def from_pandas_edgelist(
- df,
- source="source",
- target="target",
- edge_attr=None,
- create_using=None,
- edge_key=None,
- ):
- """Returns a graph from Pandas DataFrame containing an edge list.
- The Pandas DataFrame should contain at least two columns of node names and
- zero or more columns of edge attributes. Each row will be processed as one
- edge instance.
- Note: This function iterates over DataFrame.values, which is not
- guaranteed to retain the data type across columns in the row. This is only
- a problem if your row is entirely numeric and a mix of ints and floats. In
- that case, all values will be returned as floats. See the
- DataFrame.iterrows documentation for an example.
- Parameters
- ----------
- df : Pandas DataFrame
- An edge list representation of a graph
- source : str or int
- A valid column name (string or integer) for the source nodes (for the
- directed case).
- target : str or int
- A valid column name (string or integer) for the target nodes (for the
- directed case).
- edge_attr : str or int, iterable, True, or None
- A valid column name (str or int) or iterable of column names that are
- used to retrieve items and add them to the graph as edge attributes.
- If `True`, all of the remaining columns will be added.
- If `None`, no edge attributes are added to the graph.
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- edge_key : str or None, optional (default=None)
- A valid column name for the edge keys (for a MultiGraph). The values in
- this column are used for the edge keys when adding edges if create_using
- is a multigraph.
- See Also
- --------
- to_pandas_edgelist
- Examples
- --------
- Simple integer weights on edges:
- >>> import pandas as pd
- >>> pd.options.display.max_columns = 20
- >>> import numpy as np
- >>> rng = np.random.RandomState(seed=5)
- >>> ints = rng.randint(1, 11, size=(3, 2))
- >>> a = ["A", "B", "C"]
- >>> b = ["D", "A", "E"]
- >>> df = pd.DataFrame(ints, columns=["weight", "cost"])
- >>> df[0] = a
- >>> df["b"] = b
- >>> df[["weight", "cost", 0, "b"]]
- weight cost 0 b
- 0 4 7 A D
- 1 7 1 B A
- 2 10 9 C E
- >>> G = nx.from_pandas_edgelist(df, 0, "b", ["weight", "cost"])
- >>> G["E"]["C"]["weight"]
- 10
- >>> G["E"]["C"]["cost"]
- 9
- >>> edges = pd.DataFrame(
- ... {
- ... "source": [0, 1, 2],
- ... "target": [2, 2, 3],
- ... "weight": [3, 4, 5],
- ... "color": ["red", "blue", "blue"],
- ... }
- ... )
- >>> G = nx.from_pandas_edgelist(edges, edge_attr=True)
- >>> G[0][2]["color"]
- 'red'
- Build multigraph with custom keys:
- >>> edges = pd.DataFrame(
- ... {
- ... "source": [0, 1, 2, 0],
- ... "target": [2, 2, 3, 2],
- ... "my_edge_key": ["A", "B", "C", "D"],
- ... "weight": [3, 4, 5, 6],
- ... "color": ["red", "blue", "blue", "blue"],
- ... }
- ... )
- >>> G = nx.from_pandas_edgelist(
- ... edges,
- ... edge_key="my_edge_key",
- ... edge_attr=["weight", "color"],
- ... create_using=nx.MultiGraph(),
- ... )
- >>> G[0][2]
- AtlasView({'A': {'weight': 3, 'color': 'red'}, 'D': {'weight': 6, 'color': 'blue'}})
- """
- g = nx.empty_graph(0, create_using)
- if edge_attr is None:
- g.add_edges_from(zip(df[source], df[target]))
- return g
- reserved_columns = [source, target]
- # Additional columns requested
- attr_col_headings = []
- attribute_data = []
- if edge_attr is True:
- attr_col_headings = [c for c in df.columns if c not in reserved_columns]
- elif isinstance(edge_attr, (list, tuple)):
- attr_col_headings = edge_attr
- else:
- attr_col_headings = [edge_attr]
- if len(attr_col_headings) == 0:
- raise nx.NetworkXError(
- f"Invalid edge_attr argument: No columns found with name: {attr_col_headings}"
- )
- try:
- attribute_data = zip(*[df[col] for col in attr_col_headings])
- except (KeyError, TypeError) as err:
- msg = f"Invalid edge_attr argument: {edge_attr}"
- raise nx.NetworkXError(msg) from err
- if g.is_multigraph():
- # => append the edge keys from the df to the bundled data
- if edge_key is not None:
- try:
- multigraph_edge_keys = df[edge_key]
- attribute_data = zip(attribute_data, multigraph_edge_keys)
- except (KeyError, TypeError) as err:
- msg = f"Invalid edge_key argument: {edge_key}"
- raise nx.NetworkXError(msg) from err
- for s, t, attrs in zip(df[source], df[target], attribute_data):
- if edge_key is not None:
- attrs, multigraph_edge_key = attrs
- key = g.add_edge(s, t, key=multigraph_edge_key)
- else:
- key = g.add_edge(s, t)
- g[s][t][key].update(zip(attr_col_headings, attrs))
- else:
- for s, t, attrs in zip(df[source], df[target], attribute_data):
- g.add_edge(s, t)
- g[s][t].update(zip(attr_col_headings, attrs))
- return g
- def to_scipy_sparse_array(G, nodelist=None, dtype=None, weight="weight", format="csr"):
- """Returns the graph adjacency matrix as a SciPy sparse array.
- Parameters
- ----------
- G : graph
- The NetworkX graph used to construct the sparse matrix.
- nodelist : list, optional
- The rows and columns are ordered according to the nodes in `nodelist`.
- If `nodelist` is None, then the ordering is produced by G.nodes().
- dtype : NumPy data-type, optional
- A valid NumPy dtype used to initialize the array. If None, then the
- NumPy default is used.
- weight : string or None optional (default='weight')
- The edge attribute that holds the numerical value used for
- the edge weight. If None then all edge weights are 1.
- format : str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'}
- The type of the matrix to be returned (default 'csr'). For
- some algorithms different implementations of sparse matrices
- can perform better. See [1]_ for details.
- Returns
- -------
- A : SciPy sparse array
- Graph adjacency matrix.
- Notes
- -----
- For directed graphs, matrix entry i,j corresponds to an edge from i to j.
- The matrix entries are populated using the edge attribute held in
- parameter weight. When an edge does not have that attribute, the
- value of the entry is 1.
- For multiple edges the matrix values are the sums of the edge weights.
- When `nodelist` does not contain every node in `G`, the adjacency matrix
- is built from the subgraph of `G` that is induced by the nodes in
- `nodelist`.
- The convention used for self-loop edges in graphs is to assign the
- diagonal matrix entry value to the weight attribute of the edge
- (or the number 1 if the edge has no weight attribute). If the
- alternate convention of doubling the edge weight is desired the
- resulting SciPy sparse array can be modified as follows:
- >>> G = nx.Graph([(1, 1)])
- >>> A = nx.to_scipy_sparse_array(G)
- >>> print(A.todense())
- [[1]]
- >>> A.setdiag(A.diagonal() * 2)
- >>> print(A.toarray())
- [[2]]
- Examples
- --------
- >>> G = nx.MultiDiGraph()
- >>> G.add_edge(0, 1, weight=2)
- 0
- >>> G.add_edge(1, 0)
- 0
- >>> G.add_edge(2, 2, weight=3)
- 0
- >>> G.add_edge(2, 2)
- 1
- >>> S = nx.to_scipy_sparse_array(G, nodelist=[0, 1, 2])
- >>> print(S.toarray())
- [[0 2 0]
- [1 0 0]
- [0 0 4]]
- References
- ----------
- .. [1] Scipy Dev. References, "Sparse Matrices",
- https://docs.scipy.org/doc/scipy/reference/sparse.html
- """
- import scipy as sp
- import scipy.sparse # call as sp.sparse
- if len(G) == 0:
- raise nx.NetworkXError("Graph has no nodes or edges")
- if nodelist is None:
- nodelist = list(G)
- nlen = len(G)
- else:
- nlen = len(nodelist)
- if nlen == 0:
- raise nx.NetworkXError("nodelist has no nodes")
- nodeset = set(G.nbunch_iter(nodelist))
- if nlen != len(nodeset):
- for n in nodelist:
- if n not in G:
- raise nx.NetworkXError(f"Node {n} in nodelist is not in G")
- raise nx.NetworkXError("nodelist contains duplicates.")
- if nlen < len(G):
- G = G.subgraph(nodelist)
- index = dict(zip(nodelist, range(nlen)))
- coefficients = zip(
- *((index[u], index[v], wt) for u, v, wt in G.edges(data=weight, default=1))
- )
- try:
- row, col, data = coefficients
- except ValueError:
- # there is no edge in the subgraph
- row, col, data = [], [], []
- if G.is_directed():
- A = sp.sparse.coo_array((data, (row, col)), shape=(nlen, nlen), dtype=dtype)
- else:
- # symmetrize matrix
- d = data + data
- r = row + col
- c = col + row
- # selfloop entries get double counted when symmetrizing
- # so we subtract the data on the diagonal
- selfloops = list(nx.selfloop_edges(G, data=weight, default=1))
- if selfloops:
- diag_index, diag_data = zip(*((index[u], -wt) for u, v, wt in selfloops))
- d += diag_data
- r += diag_index
- c += diag_index
- A = sp.sparse.coo_array((d, (r, c)), shape=(nlen, nlen), dtype=dtype)
- try:
- return A.asformat(format)
- except ValueError as err:
- raise nx.NetworkXError(f"Unknown sparse matrix format: {format}") from err
- def _csr_gen_triples(A):
- """Converts a SciPy sparse array in **Compressed Sparse Row** format to
- an iterable of weighted edge triples.
- """
- nrows = A.shape[0]
- data, indices, indptr = A.data, A.indices, A.indptr
- for i in range(nrows):
- for j in range(indptr[i], indptr[i + 1]):
- yield i, indices[j], data[j]
- def _csc_gen_triples(A):
- """Converts a SciPy sparse array in **Compressed Sparse Column** format to
- an iterable of weighted edge triples.
- """
- ncols = A.shape[1]
- data, indices, indptr = A.data, A.indices, A.indptr
- for i in range(ncols):
- for j in range(indptr[i], indptr[i + 1]):
- yield indices[j], i, data[j]
- def _coo_gen_triples(A):
- """Converts a SciPy sparse array in **Coordinate** format to an iterable
- of weighted edge triples.
- """
- row, col, data = A.row, A.col, A.data
- return zip(row, col, data)
- def _dok_gen_triples(A):
- """Converts a SciPy sparse array in **Dictionary of Keys** format to an
- iterable of weighted edge triples.
- """
- for (r, c), v in A.items():
- yield r, c, v
- def _generate_weighted_edges(A):
- """Returns an iterable over (u, v, w) triples, where u and v are adjacent
- vertices and w is the weight of the edge joining u and v.
- `A` is a SciPy sparse array (in any format).
- """
- if A.format == "csr":
- return _csr_gen_triples(A)
- if A.format == "csc":
- return _csc_gen_triples(A)
- if A.format == "dok":
- return _dok_gen_triples(A)
- # If A is in any other format (including COO), convert it to COO format.
- return _coo_gen_triples(A.tocoo())
- def from_scipy_sparse_array(
- A, parallel_edges=False, create_using=None, edge_attribute="weight"
- ):
- """Creates a new graph from an adjacency matrix given as a SciPy sparse
- array.
- Parameters
- ----------
- A: scipy.sparse array
- An adjacency matrix representation of a graph
- parallel_edges : Boolean
- If this is True, `create_using` is a multigraph, and `A` is an
- integer matrix, then entry *(i, j)* in the matrix is interpreted as the
- number of parallel edges joining vertices *i* and *j* in the graph.
- If it is False, then the entries in the matrix are interpreted as
- the weight of a single edge joining the vertices.
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- edge_attribute: string
- Name of edge attribute to store matrix numeric value. The data will
- have the same type as the matrix entry (int, float, (real,imag)).
- Notes
- -----
- For directed graphs, explicitly mention create_using=nx.DiGraph,
- and entry i,j of A corresponds to an edge from i to j.
- If `create_using` is :class:`networkx.MultiGraph` or
- :class:`networkx.MultiDiGraph`, `parallel_edges` is True, and the
- entries of `A` are of type :class:`int`, then this function returns a
- multigraph (constructed from `create_using`) with parallel edges.
- In this case, `edge_attribute` will be ignored.
- If `create_using` indicates an undirected multigraph, then only the edges
- indicated by the upper triangle of the matrix `A` will be added to the
- graph.
- Examples
- --------
- >>> import scipy as sp
- >>> import scipy.sparse # call as sp.sparse
- >>> A = sp.sparse.eye(2, 2, 1)
- >>> G = nx.from_scipy_sparse_array(A)
- If `create_using` indicates a multigraph and the matrix has only integer
- entries and `parallel_edges` is False, then the entries will be treated
- as weights for edges joining the nodes (without creating parallel edges):
- >>> A = sp.sparse.csr_array([[1, 1], [1, 2]])
- >>> G = nx.from_scipy_sparse_array(A, create_using=nx.MultiGraph)
- >>> G[1][1]
- AtlasView({0: {'weight': 2}})
- If `create_using` indicates a multigraph and the matrix has only integer
- entries and `parallel_edges` is True, then the entries will be treated
- as the number of parallel edges joining those two vertices:
- >>> A = sp.sparse.csr_array([[1, 1], [1, 2]])
- >>> G = nx.from_scipy_sparse_array(
- ... A, parallel_edges=True, create_using=nx.MultiGraph
- ... )
- >>> G[1][1]
- AtlasView({0: {'weight': 1}, 1: {'weight': 1}})
- """
- G = nx.empty_graph(0, create_using)
- n, m = A.shape
- if n != m:
- raise nx.NetworkXError(f"Adjacency matrix not square: nx,ny={A.shape}")
- # Make sure we get even the isolated nodes of the graph.
- G.add_nodes_from(range(n))
- # Create an iterable over (u, v, w) triples and for each triple, add an
- # edge from u to v with weight w.
- triples = _generate_weighted_edges(A)
- # If the entries in the adjacency matrix are integers, the graph is a
- # multigraph, and parallel_edges is True, then create parallel edges, each
- # with weight 1, for each entry in the adjacency matrix. Otherwise, create
- # one edge for each positive entry in the adjacency matrix and set the
- # weight of that edge to be the entry in the matrix.
- if A.dtype.kind in ("i", "u") and G.is_multigraph() and parallel_edges:
- chain = itertools.chain.from_iterable
- # The following line is equivalent to:
- #
- # for (u, v) in edges:
- # for d in range(A[u, v]):
- # G.add_edge(u, v, weight=1)
- #
- triples = chain(((u, v, 1) for d in range(w)) for (u, v, w) in triples)
- # If we are creating an undirected multigraph, only add the edges from the
- # upper triangle of the matrix. Otherwise, add all the edges. This relies
- # on the fact that the vertices created in the
- # `_generated_weighted_edges()` function are actually the row/column
- # indices for the matrix `A`.
- #
- # Without this check, we run into a problem where each edge is added twice
- # when `G.add_weighted_edges_from()` is invoked below.
- if G.is_multigraph() and not G.is_directed():
- triples = ((u, v, d) for u, v, d in triples if u <= v)
- G.add_weighted_edges_from(triples, weight=edge_attribute)
- return G
- def to_numpy_array(
- G,
- nodelist=None,
- dtype=None,
- order=None,
- multigraph_weight=sum,
- weight="weight",
- nonedge=0.0,
- ):
- """Returns the graph adjacency matrix as a NumPy array.
- Parameters
- ----------
- G : graph
- The NetworkX graph used to construct the NumPy array.
- nodelist : list, optional
- The rows and columns are ordered according to the nodes in `nodelist`.
- If `nodelist` is ``None``, then the ordering is produced by ``G.nodes()``.
- dtype : NumPy data type, optional
- A NumPy data type used to initialize the array. If None, then the NumPy
- default is used. The dtype can be structured if `weight=None`, in which
- case the dtype field names are used to look up edge attributes. The
- result is a structured array where each named field in the dtype
- corresponds to the adjaceny for that edge attribute. See examples for
- details.
- order : {'C', 'F'}, optional
- Whether to store multidimensional data in C- or Fortran-contiguous
- (row- or column-wise) order in memory. If None, then the NumPy default
- is used.
- multigraph_weight : callable, optional
- An function that determines how weights in multigraphs are handled.
- The function should accept a sequence of weights and return a single
- value. The default is to sum the weights of the multiple edges.
- weight : string or None optional (default = 'weight')
- The edge attribute that holds the numerical value used for
- the edge weight. If an edge does not have that attribute, then the
- value 1 is used instead. `weight` must be ``None`` if a structured
- dtype is used.
- nonedge : array_like (default = 0.0)
- The value used to represent non-edges in the adjaceny matrix.
- The array values corresponding to nonedges are typically set to zero.
- However, this could be undesirable if there are array values
- corresponding to actual edges that also have the value zero. If so,
- one might prefer nonedges to have some other value, such as ``nan``.
- Returns
- -------
- A : NumPy ndarray
- Graph adjacency matrix
- Raises
- ------
- NetworkXError
- If `dtype` is a structured dtype and `G` is a multigraph
- ValueError
- If `dtype` is a structured dtype and `weight` is not `None`
- See Also
- --------
- from_numpy_array
- Notes
- -----
- For directed graphs, entry ``i, j`` corresponds to an edge from ``i`` to ``j``.
- Entries in the adjacency matrix are given by the `weight` edge attribute.
- When an edge does not have a weight attribute, the value of the entry is
- set to the number 1. For multiple (parallel) edges, the values of the
- entries are determined by the `multigraph_weight` parameter. The default is
- to sum the weight attributes for each of the parallel edges.
- When `nodelist` does not contain every node in `G`, the adjacency matrix is
- built from the subgraph of `G` that is induced by the nodes in `nodelist`.
- The convention used for self-loop edges in graphs is to assign the
- diagonal array entry value to the weight attribute of the edge
- (or the number 1 if the edge has no weight attribute). If the
- alternate convention of doubling the edge weight is desired the
- resulting NumPy array can be modified as follows:
- >>> import numpy as np
- >>> G = nx.Graph([(1, 1)])
- >>> A = nx.to_numpy_array(G)
- >>> A
- array([[1.]])
- >>> A[np.diag_indices_from(A)] *= 2
- >>> A
- array([[2.]])
- Examples
- --------
- >>> G = nx.MultiDiGraph()
- >>> G.add_edge(0, 1, weight=2)
- 0
- >>> G.add_edge(1, 0)
- 0
- >>> G.add_edge(2, 2, weight=3)
- 0
- >>> G.add_edge(2, 2)
- 1
- >>> nx.to_numpy_array(G, nodelist=[0, 1, 2])
- array([[0., 2., 0.],
- [1., 0., 0.],
- [0., 0., 4.]])
- When `nodelist` argument is used, nodes of `G` which do not appear in the `nodelist`
- and their edges are not included in the adjacency matrix. Here is an example:
- >>> G = nx.Graph()
- >>> G.add_edge(3, 1)
- >>> G.add_edge(2, 0)
- >>> G.add_edge(2, 1)
- >>> G.add_edge(3, 0)
- >>> nx.to_numpy_array(G, nodelist=[1, 2, 3])
- array([[0., 1., 1.],
- [1., 0., 0.],
- [1., 0., 0.]])
- This function can also be used to create adjacency matrices for multiple
- edge attributes with structured dtypes:
- >>> G = nx.Graph()
- >>> G.add_edge(0, 1, weight=10)
- >>> G.add_edge(1, 2, cost=5)
- >>> G.add_edge(2, 3, weight=3, cost=-4.0)
- >>> dtype = np.dtype([("weight", int), ("cost", float)])
- >>> A = nx.to_numpy_array(G, dtype=dtype, weight=None)
- >>> A["weight"]
- array([[ 0, 10, 0, 0],
- [10, 0, 1, 0],
- [ 0, 1, 0, 3],
- [ 0, 0, 3, 0]])
- >>> A["cost"]
- array([[ 0., 1., 0., 0.],
- [ 1., 0., 5., 0.],
- [ 0., 5., 0., -4.],
- [ 0., 0., -4., 0.]])
- As stated above, the argument "nonedge" is useful especially when there are
- actually edges with weight 0 in the graph. Setting a nonedge value different than 0,
- makes it much clearer to differentiate such 0-weighted edges and actual nonedge values.
- >>> G = nx.Graph()
- >>> G.add_edge(3, 1, weight=2)
- >>> G.add_edge(2, 0, weight=0)
- >>> G.add_edge(2, 1, weight=0)
- >>> G.add_edge(3, 0, weight=1)
- >>> nx.to_numpy_array(G, nonedge=-1.)
- array([[-1., 2., -1., 1.],
- [ 2., -1., 0., -1.],
- [-1., 0., -1., 0.],
- [ 1., -1., 0., -1.]])
- """
- import numpy as np
- if nodelist is None:
- nodelist = list(G)
- nlen = len(nodelist)
- # Input validation
- nodeset = set(nodelist)
- if nodeset - set(G):
- raise nx.NetworkXError(f"Nodes {nodeset - set(G)} in nodelist is not in G")
- if len(nodeset) < nlen:
- raise nx.NetworkXError("nodelist contains duplicates.")
- A = np.full((nlen, nlen), fill_value=nonedge, dtype=dtype, order=order)
- # Corner cases: empty nodelist or graph without any edges
- if nlen == 0 or G.number_of_edges() == 0:
- return A
- # If dtype is structured and weight is None, use dtype field names as
- # edge attributes
- edge_attrs = None # Only single edge attribute by default
- if A.dtype.names:
- if weight is None:
- edge_attrs = dtype.names
- else:
- raise ValueError(
- "Specifying `weight` not supported for structured dtypes\n."
- "To create adjacency matrices from structured dtypes, use `weight=None`."
- )
- # Map nodes to row/col in matrix
- idx = dict(zip(nodelist, range(nlen)))
- if len(nodelist) < len(G):
- G = G.subgraph(nodelist).copy()
- # Collect all edge weights and reduce with `multigraph_weights`
- if G.is_multigraph():
- if edge_attrs:
- raise nx.NetworkXError(
- "Structured arrays are not supported for MultiGraphs"
- )
- d = defaultdict(list)
- for u, v, wt in G.edges(data=weight, default=1.0):
- d[(idx[u], idx[v])].append(wt)
- i, j = np.array(list(d.keys())).T # indices
- wts = [multigraph_weight(ws) for ws in d.values()] # reduced weights
- else:
- i, j, wts = [], [], []
- # Special branch: multi-attr adjacency from structured dtypes
- if edge_attrs:
- # Extract edges with all data
- for u, v, data in G.edges(data=True):
- i.append(idx[u])
- j.append(idx[v])
- wts.append(data)
- # Map each attribute to the appropriate named field in the
- # structured dtype
- for attr in edge_attrs:
- attr_data = [wt.get(attr, 1.0) for wt in wts]
- A[attr][i, j] = attr_data
- if not G.is_directed():
- A[attr][j, i] = attr_data
- return A
- for u, v, wt in G.edges(data=weight, default=1.0):
- i.append(idx[u])
- j.append(idx[v])
- wts.append(wt)
- # Set array values with advanced indexing
- A[i, j] = wts
- if not G.is_directed():
- A[j, i] = wts
- return A
- def from_numpy_array(A, parallel_edges=False, create_using=None):
- """Returns a graph from a 2D NumPy array.
- The 2D NumPy array is interpreted as an adjacency matrix for the graph.
- Parameters
- ----------
- A : a 2D numpy.ndarray
- An adjacency matrix representation of a graph
- parallel_edges : Boolean
- If this is True, `create_using` is a multigraph, and `A` is an
- integer array, then entry *(i, j)* in the array is interpreted as the
- number of parallel edges joining vertices *i* and *j* in the graph.
- If it is False, then the entries in the array are interpreted as
- the weight of a single edge joining the vertices.
- create_using : NetworkX graph constructor, optional (default=nx.Graph)
- Graph type to create. If graph instance, then cleared before populated.
- Notes
- -----
- For directed graphs, explicitly mention create_using=nx.DiGraph,
- and entry i,j of A corresponds to an edge from i to j.
- If `create_using` is :class:`networkx.MultiGraph` or
- :class:`networkx.MultiDiGraph`, `parallel_edges` is True, and the
- entries of `A` are of type :class:`int`, then this function returns a
- multigraph (of the same type as `create_using`) with parallel edges.
- If `create_using` indicates an undirected multigraph, then only the edges
- indicated by the upper triangle of the array `A` will be added to the
- graph.
- If the NumPy array has a single data type for each array entry it
- will be converted to an appropriate Python data type.
- If the NumPy array has a user-specified compound data type the names
- of the data fields will be used as attribute keys in the resulting
- NetworkX graph.
- See Also
- --------
- to_numpy_array
- Examples
- --------
- Simple integer weights on edges:
- >>> import numpy as np
- >>> A = np.array([[1, 1], [2, 1]])
- >>> G = nx.from_numpy_array(A)
- >>> G.edges(data=True)
- EdgeDataView([(0, 0, {'weight': 1}), (0, 1, {'weight': 2}), (1, 1, {'weight': 1})])
- If `create_using` indicates a multigraph and the array has only integer
- entries and `parallel_edges` is False, then the entries will be treated
- as weights for edges joining the nodes (without creating parallel edges):
- >>> A = np.array([[1, 1], [1, 2]])
- >>> G = nx.from_numpy_array(A, create_using=nx.MultiGraph)
- >>> G[1][1]
- AtlasView({0: {'weight': 2}})
- If `create_using` indicates a multigraph and the array has only integer
- entries and `parallel_edges` is True, then the entries will be treated
- as the number of parallel edges joining those two vertices:
- >>> A = np.array([[1, 1], [1, 2]])
- >>> temp = nx.MultiGraph()
- >>> G = nx.from_numpy_array(A, parallel_edges=True, create_using=temp)
- >>> G[1][1]
- AtlasView({0: {'weight': 1}, 1: {'weight': 1}})
- User defined compound data type on edges:
- >>> dt = [("weight", float), ("cost", int)]
- >>> A = np.array([[(1.0, 2)]], dtype=dt)
- >>> G = nx.from_numpy_array(A)
- >>> G.edges()
- EdgeView([(0, 0)])
- >>> G[0][0]["cost"]
- 2
- >>> G[0][0]["weight"]
- 1.0
- """
- kind_to_python_type = {
- "f": float,
- "i": int,
- "u": int,
- "b": bool,
- "c": complex,
- "S": str,
- "U": str,
- "V": "void",
- }
- G = nx.empty_graph(0, create_using)
- if A.ndim != 2:
- raise nx.NetworkXError(f"Input array must be 2D, not {A.ndim}")
- n, m = A.shape
- if n != m:
- raise nx.NetworkXError(f"Adjacency matrix not square: nx,ny={A.shape}")
- dt = A.dtype
- try:
- python_type = kind_to_python_type[dt.kind]
- except Exception as err:
- raise TypeError(f"Unknown numpy data type: {dt}") from err
- # Make sure we get even the isolated nodes of the graph.
- G.add_nodes_from(range(n))
- # Get a list of all the entries in the array with nonzero entries. These
- # coordinates become edges in the graph. (convert to int from np.int64)
- edges = ((int(e[0]), int(e[1])) for e in zip(*A.nonzero()))
- # handle numpy constructed data type
- if python_type == "void":
- # Sort the fields by their offset, then by dtype, then by name.
- fields = sorted(
- (offset, dtype, name) for name, (dtype, offset) in A.dtype.fields.items()
- )
- triples = (
- (
- u,
- v,
- {
- name: kind_to_python_type[dtype.kind](val)
- for (_, dtype, name), val in zip(fields, A[u, v])
- },
- )
- for u, v in edges
- )
- # If the entries in the adjacency matrix are integers, the graph is a
- # multigraph, and parallel_edges is True, then create parallel edges, each
- # with weight 1, for each entry in the adjacency matrix. Otherwise, create
- # one edge for each positive entry in the adjacency matrix and set the
- # weight of that edge to be the entry in the matrix.
- elif python_type is int and G.is_multigraph() and parallel_edges:
- chain = itertools.chain.from_iterable
- # The following line is equivalent to:
- #
- # for (u, v) in edges:
- # for d in range(A[u, v]):
- # G.add_edge(u, v, weight=1)
- #
- triples = chain(
- ((u, v, {"weight": 1}) for d in range(A[u, v])) for (u, v) in edges
- )
- else: # basic data type
- triples = ((u, v, {"weight": python_type(A[u, v])}) for u, v in edges)
- # If we are creating an undirected multigraph, only add the edges from the
- # upper triangle of the matrix. Otherwise, add all the edges. This relies
- # on the fact that the vertices created in the
- # `_generated_weighted_edges()` function are actually the row/column
- # indices for the matrix `A`.
- #
- # Without this check, we run into a problem where each edge is added twice
- # when `G.add_edges_from()` is invoked below.
- if G.is_multigraph() and not G.is_directed():
- triples = ((u, v, d) for u, v, d in triples if u <= v)
- G.add_edges_from(triples)
- return G
|