123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528 |
- from collections import UserDict
- import pytest
- import networkx as nx
- from networkx.utils import edges_equal
- from .test_graph import BaseAttrGraphTester
- from .test_graph import TestGraph as _TestGraph
- class BaseMultiGraphTester(BaseAttrGraphTester):
- def test_has_edge(self):
- G = self.K3
- assert G.has_edge(0, 1)
- assert not G.has_edge(0, -1)
- assert G.has_edge(0, 1, 0)
- assert not G.has_edge(0, 1, 1)
- def test_get_edge_data(self):
- G = self.K3
- assert G.get_edge_data(0, 1) == {0: {}}
- assert G[0][1] == {0: {}}
- assert G[0][1][0] == {}
- assert G.get_edge_data(10, 20) is None
- assert G.get_edge_data(0, 1, 0) == {}
- def test_adjacency(self):
- G = self.K3
- assert dict(G.adjacency()) == {
- 0: {1: {0: {}}, 2: {0: {}}},
- 1: {0: {0: {}}, 2: {0: {}}},
- 2: {0: {0: {}}, 1: {0: {}}},
- }
- def deepcopy_edge_attr(self, H, G):
- assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
- G[1][2][0]["foo"].append(1)
- assert G[1][2][0]["foo"] != H[1][2][0]["foo"]
- def shallow_copy_edge_attr(self, H, G):
- assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
- G[1][2][0]["foo"].append(1)
- assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
- def graphs_equal(self, H, G):
- assert G._adj == H._adj
- assert G._node == H._node
- assert G.graph == H.graph
- assert G.name == H.name
- if not G.is_directed() and not H.is_directed():
- assert H._adj[1][2][0] is H._adj[2][1][0]
- assert G._adj[1][2][0] is G._adj[2][1][0]
- else: # at least one is directed
- if not G.is_directed():
- G._pred = G._adj
- G._succ = G._adj
- if not H.is_directed():
- H._pred = H._adj
- H._succ = H._adj
- assert G._pred == H._pred
- assert G._succ == H._succ
- assert H._succ[1][2][0] is H._pred[2][1][0]
- assert G._succ[1][2][0] is G._pred[2][1][0]
- def same_attrdict(self, H, G):
- # same attrdict in the edgedata
- old_foo = H[1][2][0]["foo"]
- H.adj[1][2][0]["foo"] = "baz"
- assert G._adj == H._adj
- H.adj[1][2][0]["foo"] = old_foo
- assert G._adj == H._adj
- old_foo = H.nodes[0]["foo"]
- H.nodes[0]["foo"] = "baz"
- assert G._node == H._node
- H.nodes[0]["foo"] = old_foo
- assert G._node == H._node
- def different_attrdict(self, H, G):
- # used by graph_equal_but_different
- old_foo = H[1][2][0]["foo"]
- H.adj[1][2][0]["foo"] = "baz"
- assert G._adj != H._adj
- H.adj[1][2][0]["foo"] = old_foo
- assert G._adj == H._adj
- old_foo = H.nodes[0]["foo"]
- H.nodes[0]["foo"] = "baz"
- assert G._node != H._node
- H.nodes[0]["foo"] = old_foo
- assert G._node == H._node
- def test_to_undirected(self):
- G = self.K3
- self.add_attributes(G)
- H = nx.MultiGraph(G)
- self.is_shallow_copy(H, G)
- H = G.to_undirected()
- self.is_deepcopy(H, G)
- def test_to_directed(self):
- G = self.K3
- self.add_attributes(G)
- H = nx.MultiDiGraph(G)
- self.is_shallow_copy(H, G)
- H = G.to_directed()
- self.is_deepcopy(H, G)
- def test_number_of_edges_selfloops(self):
- G = self.K3
- G.add_edge(0, 0)
- G.add_edge(0, 0)
- G.add_edge(0, 0, key="parallel edge")
- G.remove_edge(0, 0, key="parallel edge")
- assert G.number_of_edges(0, 0) == 2
- G.remove_edge(0, 0)
- assert G.number_of_edges(0, 0) == 1
- def test_edge_lookup(self):
- G = self.Graph()
- G.add_edge(1, 2, foo="bar")
- G.add_edge(1, 2, "key", foo="biz")
- assert edges_equal(G.edges[1, 2, 0], {"foo": "bar"})
- assert edges_equal(G.edges[1, 2, "key"], {"foo": "biz"})
- def test_edge_attr(self):
- G = self.Graph()
- G.add_edge(1, 2, key="k1", foo="bar")
- G.add_edge(1, 2, key="k2", foo="baz")
- assert isinstance(G.get_edge_data(1, 2), G.edge_key_dict_factory)
- assert all(
- isinstance(d, G.edge_attr_dict_factory) for u, v, d in G.edges(data=True)
- )
- assert edges_equal(
- G.edges(keys=True, data=True),
- [(1, 2, "k1", {"foo": "bar"}), (1, 2, "k2", {"foo": "baz"})],
- )
- assert edges_equal(
- G.edges(keys=True, data="foo"), [(1, 2, "k1", "bar"), (1, 2, "k2", "baz")]
- )
- def test_edge_attr4(self):
- G = self.Graph()
- G.add_edge(1, 2, key=0, data=7, spam="bar", bar="foo")
- assert edges_equal(
- G.edges(data=True), [(1, 2, {"data": 7, "spam": "bar", "bar": "foo"})]
- )
- G[1][2][0]["data"] = 10 # OK to set data like this
- assert edges_equal(
- G.edges(data=True), [(1, 2, {"data": 10, "spam": "bar", "bar": "foo"})]
- )
- G.adj[1][2][0]["data"] = 20
- assert edges_equal(
- G.edges(data=True), [(1, 2, {"data": 20, "spam": "bar", "bar": "foo"})]
- )
- G.edges[1, 2, 0]["data"] = 21 # another spelling, "edge"
- assert edges_equal(
- G.edges(data=True), [(1, 2, {"data": 21, "spam": "bar", "bar": "foo"})]
- )
- G.adj[1][2][0]["listdata"] = [20, 200]
- G.adj[1][2][0]["weight"] = 20
- assert edges_equal(
- G.edges(data=True),
- [
- (
- 1,
- 2,
- {
- "data": 21,
- "spam": "bar",
- "bar": "foo",
- "listdata": [20, 200],
- "weight": 20,
- },
- )
- ],
- )
- class TestMultiGraph(BaseMultiGraphTester, _TestGraph):
- def setup_method(self):
- self.Graph = nx.MultiGraph
- # build K3
- ed1, ed2, ed3 = ({0: {}}, {0: {}}, {0: {}})
- self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed1, 2: ed3}, 2: {0: ed2, 1: ed3}}
- self.k3edges = [(0, 1), (0, 2), (1, 2)]
- self.k3nodes = [0, 1, 2]
- self.K3 = self.Graph()
- self.K3._adj = self.k3adj
- self.K3._node = {}
- self.K3._node[0] = {}
- self.K3._node[1] = {}
- self.K3._node[2] = {}
- def test_data_input(self):
- G = self.Graph({1: [2], 2: [1]}, name="test")
- assert G.name == "test"
- expected = [(1, {2: {0: {}}}), (2, {1: {0: {}}})]
- assert sorted(G.adj.items()) == expected
- def test_data_multigraph_input(self):
- # standard case with edge keys and edge data
- edata0 = {"w": 200, "s": "foo"}
- edata1 = {"w": 201, "s": "bar"}
- keydict = {0: edata0, 1: edata1}
- dododod = {"a": {"b": keydict}}
- multiple_edge = [("a", "b", 0, edata0), ("a", "b", 1, edata1)]
- single_edge = [("a", "b", 0, keydict)]
- G = self.Graph(dododod, multigraph_input=True)
- assert list(G.edges(keys=True, data=True)) == multiple_edge
- G = self.Graph(dododod, multigraph_input=None)
- assert list(G.edges(keys=True, data=True)) == multiple_edge
- G = self.Graph(dododod, multigraph_input=False)
- assert list(G.edges(keys=True, data=True)) == single_edge
- # test round-trip to_dict_of_dict and MultiGraph constructor
- G = self.Graph(dododod, multigraph_input=True)
- H = self.Graph(nx.to_dict_of_dicts(G))
- assert nx.is_isomorphic(G, H) is True # test that default is True
- for mgi in [True, False]:
- H = self.Graph(nx.to_dict_of_dicts(G), multigraph_input=mgi)
- assert nx.is_isomorphic(G, H) == mgi
- # Set up cases for when incoming_graph_data is not multigraph_input
- etraits = {"w": 200, "s": "foo"}
- egraphics = {"color": "blue", "shape": "box"}
- edata = {"traits": etraits, "graphics": egraphics}
- dodod1 = {"a": {"b": edata}}
- dodod2 = {"a": {"b": etraits}}
- dodod3 = {"a": {"b": {"traits": etraits, "s": "foo"}}}
- dol = {"a": ["b"]}
- multiple_edge = [("a", "b", "traits", etraits), ("a", "b", "graphics", egraphics)]
- single_edge = [("a", "b", 0, {})] # type: ignore[var-annotated]
- single_edge1 = [("a", "b", 0, edata)]
- single_edge2 = [("a", "b", 0, etraits)]
- single_edge3 = [("a", "b", 0, {"traits": etraits, "s": "foo"})]
- cases = [ # (dod, mgi, edges)
- (dodod1, True, multiple_edge),
- (dodod1, False, single_edge1),
- (dodod2, False, single_edge2),
- (dodod3, False, single_edge3),
- (dol, False, single_edge),
- ]
- @pytest.mark.parametrize("dod, mgi, edges", cases)
- def test_non_multigraph_input(self, dod, mgi, edges):
- G = self.Graph(dod, multigraph_input=mgi)
- assert list(G.edges(keys=True, data=True)) == edges
- G = nx.to_networkx_graph(dod, create_using=self.Graph, multigraph_input=mgi)
- assert list(G.edges(keys=True, data=True)) == edges
- mgi_none_cases = [
- (dodod1, multiple_edge),
- (dodod2, single_edge2),
- (dodod3, single_edge3),
- ]
- @pytest.mark.parametrize("dod, edges", mgi_none_cases)
- def test_non_multigraph_input_mgi_none(self, dod, edges):
- # test constructor without to_networkx_graph for mgi=None
- G = self.Graph(dod)
- assert list(G.edges(keys=True, data=True)) == edges
- raise_cases = [dodod2, dodod3, dol]
- @pytest.mark.parametrize("dod", raise_cases)
- def test_non_multigraph_input_raise(self, dod):
- # cases where NetworkXError is raised
- pytest.raises(nx.NetworkXError, self.Graph, dod, multigraph_input=True)
- pytest.raises(
- nx.NetworkXError,
- nx.to_networkx_graph,
- dod,
- create_using=self.Graph,
- multigraph_input=True,
- )
- def test_getitem(self):
- G = self.K3
- assert G[0] == {1: {0: {}}, 2: {0: {}}}
- with pytest.raises(KeyError):
- G.__getitem__("j")
- with pytest.raises(TypeError):
- G.__getitem__(["A"])
- def test_remove_node(self):
- G = self.K3
- G.remove_node(0)
- assert G.adj == {1: {2: {0: {}}}, 2: {1: {0: {}}}}
- with pytest.raises(nx.NetworkXError):
- G.remove_node(-1)
- def test_add_edge(self):
- G = self.Graph()
- G.add_edge(0, 1)
- assert G.adj == {0: {1: {0: {}}}, 1: {0: {0: {}}}}
- G = self.Graph()
- G.add_edge(*(0, 1))
- assert G.adj == {0: {1: {0: {}}}, 1: {0: {0: {}}}}
- G = self.Graph()
- with pytest.raises(ValueError):
- G.add_edge(None, "anything")
- def test_add_edge_conflicting_key(self):
- G = self.Graph()
- G.add_edge(0, 1, key=1)
- G.add_edge(0, 1)
- assert G.number_of_edges() == 2
- G = self.Graph()
- G.add_edges_from([(0, 1, 1, {})])
- G.add_edges_from([(0, 1)])
- assert G.number_of_edges() == 2
- def test_add_edges_from(self):
- G = self.Graph()
- G.add_edges_from([(0, 1), (0, 1, {"weight": 3})])
- assert G.adj == {
- 0: {1: {0: {}, 1: {"weight": 3}}},
- 1: {0: {0: {}, 1: {"weight": 3}}},
- }
- G.add_edges_from([(0, 1), (0, 1, {"weight": 3})], weight=2)
- assert G.adj == {
- 0: {1: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
- 1: {0: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
- }
- G = self.Graph()
- edges = [
- (0, 1, {"weight": 3}),
- (0, 1, (("weight", 2),)),
- (0, 1, 5),
- (0, 1, "s"),
- ]
- G.add_edges_from(edges)
- keydict = {0: {"weight": 3}, 1: {"weight": 2}, 5: {}, "s": {}}
- assert G._adj == {0: {1: keydict}, 1: {0: keydict}}
- # too few in tuple
- with pytest.raises(nx.NetworkXError):
- G.add_edges_from([(0,)])
- # too many in tuple
- with pytest.raises(nx.NetworkXError):
- G.add_edges_from([(0, 1, 2, 3, 4)])
- # not a tuple
- with pytest.raises(TypeError):
- G.add_edges_from([0])
- def test_multigraph_add_edges_from_four_tuple_misordered(self):
- """add_edges_from expects 4-tuples of the format (u, v, key, data_dict).
- Ensure 4-tuples of form (u, v, data_dict, key) raise exception.
- """
- G = nx.MultiGraph()
- with pytest.raises(TypeError):
- # key/data values flipped in 4-tuple
- G.add_edges_from([(0, 1, {"color": "red"}, 0)])
- def test_remove_edge(self):
- G = self.K3
- G.remove_edge(0, 1)
- assert G.adj == {0: {2: {0: {}}}, 1: {2: {0: {}}}, 2: {0: {0: {}}, 1: {0: {}}}}
- with pytest.raises(nx.NetworkXError):
- G.remove_edge(-1, 0)
- with pytest.raises(nx.NetworkXError):
- G.remove_edge(0, 2, key=1)
- def test_remove_edges_from(self):
- G = self.K3.copy()
- G.remove_edges_from([(0, 1)])
- kd = {0: {}}
- assert G.adj == {0: {2: kd}, 1: {2: kd}, 2: {0: kd, 1: kd}}
- G.remove_edges_from([(0, 0)]) # silent fail
- self.K3.add_edge(0, 1)
- G = self.K3.copy()
- G.remove_edges_from(list(G.edges(data=True, keys=True)))
- assert G.adj == {0: {}, 1: {}, 2: {}}
- G = self.K3.copy()
- G.remove_edges_from(list(G.edges(data=False, keys=True)))
- assert G.adj == {0: {}, 1: {}, 2: {}}
- G = self.K3.copy()
- G.remove_edges_from(list(G.edges(data=False, keys=False)))
- assert G.adj == {0: {}, 1: {}, 2: {}}
- G = self.K3.copy()
- G.remove_edges_from([(0, 1, 0), (0, 2, 0, {}), (1, 2)])
- assert G.adj == {0: {1: {1: {}}}, 1: {0: {1: {}}}, 2: {}}
- def test_remove_multiedge(self):
- G = self.K3
- G.add_edge(0, 1, key="parallel edge")
- G.remove_edge(0, 1, key="parallel edge")
- assert G.adj == {
- 0: {1: {0: {}}, 2: {0: {}}},
- 1: {0: {0: {}}, 2: {0: {}}},
- 2: {0: {0: {}}, 1: {0: {}}},
- }
- G.remove_edge(0, 1)
- kd = {0: {}}
- assert G.adj == {0: {2: kd}, 1: {2: kd}, 2: {0: kd, 1: kd}}
- with pytest.raises(nx.NetworkXError):
- G.remove_edge(-1, 0)
- class TestEdgeSubgraph:
- """Unit tests for the :meth:`MultiGraph.edge_subgraph` method."""
- def setup_method(self):
- # Create a doubly-linked path graph on five nodes.
- G = nx.MultiGraph()
- nx.add_path(G, range(5))
- nx.add_path(G, range(5))
- # Add some node, edge, and graph attributes.
- for i in range(5):
- G.nodes[i]["name"] = f"node{i}"
- G.adj[0][1][0]["name"] = "edge010"
- G.adj[0][1][1]["name"] = "edge011"
- G.adj[3][4][0]["name"] = "edge340"
- G.adj[3][4][1]["name"] = "edge341"
- G.graph["name"] = "graph"
- # Get the subgraph induced by one of the first edges and one of
- # the last edges.
- self.G = G
- self.H = G.edge_subgraph([(0, 1, 0), (3, 4, 1)])
- def test_correct_nodes(self):
- """Tests that the subgraph has the correct nodes."""
- assert [0, 1, 3, 4] == sorted(self.H.nodes())
- def test_correct_edges(self):
- """Tests that the subgraph has the correct edges."""
- assert [(0, 1, 0, "edge010"), (3, 4, 1, "edge341")] == sorted(
- self.H.edges(keys=True, data="name")
- )
- def test_add_node(self):
- """Tests that adding a node to the original graph does not
- affect the nodes of the subgraph.
- """
- self.G.add_node(5)
- assert [0, 1, 3, 4] == sorted(self.H.nodes())
- def test_remove_node(self):
- """Tests that removing a node in the original graph does
- affect the nodes of the subgraph.
- """
- self.G.remove_node(0)
- assert [1, 3, 4] == sorted(self.H.nodes())
- def test_node_attr_dict(self):
- """Tests that the node attribute dictionary of the two graphs is
- the same object.
- """
- for v in self.H:
- assert self.G.nodes[v] == self.H.nodes[v]
- # Making a change to G should make a change in H and vice versa.
- self.G.nodes[0]["name"] = "foo"
- assert self.G.nodes[0] == self.H.nodes[0]
- self.H.nodes[1]["name"] = "bar"
- assert self.G.nodes[1] == self.H.nodes[1]
- def test_edge_attr_dict(self):
- """Tests that the edge attribute dictionary of the two graphs is
- the same object.
- """
- for u, v, k in self.H.edges(keys=True):
- assert self.G._adj[u][v][k] == self.H._adj[u][v][k]
- # Making a change to G should make a change in H and vice versa.
- self.G._adj[0][1][0]["name"] = "foo"
- assert self.G._adj[0][1][0]["name"] == self.H._adj[0][1][0]["name"]
- self.H._adj[3][4][1]["name"] = "bar"
- assert self.G._adj[3][4][1]["name"] == self.H._adj[3][4][1]["name"]
- def test_graph_attr_dict(self):
- """Tests that the graph attribute dictionary of the two graphs
- is the same object.
- """
- assert self.G.graph is self.H.graph
- class CustomDictClass(UserDict):
- pass
- class MultiGraphSubClass(nx.MultiGraph):
- node_dict_factory = CustomDictClass # type: ignore[assignment]
- node_attr_dict_factory = CustomDictClass # type: ignore[assignment]
- adjlist_outer_dict_factory = CustomDictClass # type: ignore[assignment]
- adjlist_inner_dict_factory = CustomDictClass # type: ignore[assignment]
- edge_key_dict_factory = CustomDictClass # type: ignore[assignment]
- edge_attr_dict_factory = CustomDictClass # type: ignore[assignment]
- graph_attr_dict_factory = CustomDictClass # type: ignore[assignment]
- class TestMultiGraphSubclass(TestMultiGraph):
- def setup_method(self):
- self.Graph = MultiGraphSubClass
- # build K3
- self.k3edges = [(0, 1), (0, 2), (1, 2)]
- self.k3nodes = [0, 1, 2]
- self.K3 = self.Graph()
- self.K3._adj = self.K3.adjlist_outer_dict_factory(
- {
- 0: self.K3.adjlist_inner_dict_factory(),
- 1: self.K3.adjlist_inner_dict_factory(),
- 2: self.K3.adjlist_inner_dict_factory(),
- }
- )
- self.K3._pred = {0: {}, 1: {}, 2: {}}
- for u in self.k3nodes:
- for v in self.k3nodes:
- if u != v:
- d = {0: {}}
- self.K3._adj[u][v] = d
- self.K3._adj[v][u] = d
- self.K3._node = self.K3.node_dict_factory()
- self.K3._node[0] = self.K3.node_attr_dict_factory()
- self.K3._node[1] = self.K3.node_attr_dict_factory()
- self.K3._node[2] = self.K3.node_attr_dict_factory()
|