123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- """Unit tests for the :mod:`networkx.algorithms.wiener` module."""
- from networkx import DiGraph, complete_graph, empty_graph, path_graph, wiener_index
- class TestWienerIndex:
- """Unit tests for computing the Wiener index of a graph."""
- def test_disconnected_graph(self):
- """Tests that the Wiener index of a disconnected graph is
- positive infinity.
- """
- assert wiener_index(empty_graph(2)) == float("inf")
- def test_directed(self):
- """Tests that each pair of nodes in the directed graph is
- counted once when computing the Wiener index.
- """
- G = complete_graph(3)
- H = DiGraph(G)
- assert (2 * wiener_index(G)) == wiener_index(H)
- def test_complete_graph(self):
- """Tests that the Wiener index of the complete graph is simply
- the number of edges.
- """
- n = 10
- G = complete_graph(n)
- assert wiener_index(G) == (n * (n - 1) / 2)
- def test_path_graph(self):
- """Tests that the Wiener index of the path graph is correctly
- computed.
- """
- # In P_n, there are n - 1 pairs of vertices at distance one, n -
- # 2 pairs at distance two, n - 3 at distance three, ..., 1 at
- # distance n - 1, so the Wiener index should be
- #
- # 1 * (n - 1) + 2 * (n - 2) + ... + (n - 2) * 2 + (n - 1) * 1
- #
- # For example, in P_5,
- #
- # 1 * 4 + 2 * 3 + 3 * 2 + 4 * 1 = 2 (1 * 4 + 2 * 3)
- #
- # and in P_6,
- #
- # 1 * 5 + 2 * 4 + 3 * 3 + 4 * 2 + 5 * 1 = 2 (1 * 5 + 2 * 4) + 3 * 3
- #
- # assuming n is *odd*, this gives the formula
- #
- # 2 \sum_{i = 1}^{(n - 1) / 2} [i * (n - i)]
- #
- # assuming n is *even*, this gives the formula
- #
- # 2 \sum_{i = 1}^{n / 2} [i * (n - i)] - (n / 2) ** 2
- #
- n = 9
- G = path_graph(n)
- expected = 2 * sum(i * (n - i) for i in range(1, (n // 2) + 1))
- actual = wiener_index(G)
- assert expected == actual
|