123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- """Unit tests for the :mod:`networkx.algorithms.structuralholes` module."""
- import math
- import pytest
- import networkx as nx
- from networkx.classes.tests import dispatch_interface
- class TestStructuralHoles:
- """Unit tests for computing measures of structural holes.
- The expected values for these functions were originally computed using the
- proprietary software `UCINET`_ and the free software `IGraph`_ , and then
- computed by hand to make sure that the results are correct.
- .. _UCINET: https://sites.google.com/site/ucinetsoftware/home
- .. _IGraph: http://igraph.org/
- """
- def setup_method(self):
- self.D = nx.DiGraph()
- self.D.add_edges_from([(0, 1), (0, 2), (1, 0), (2, 1)])
- self.D_weights = {(0, 1): 2, (0, 2): 2, (1, 0): 1, (2, 1): 1}
- # Example from http://www.analytictech.com/connections/v20(1)/holes.htm
- self.G = nx.Graph()
- self.G.add_edges_from(
- [
- ("A", "B"),
- ("A", "F"),
- ("A", "G"),
- ("A", "E"),
- ("E", "G"),
- ("F", "G"),
- ("B", "G"),
- ("B", "D"),
- ("D", "G"),
- ("G", "C"),
- ]
- )
- self.G_weights = {
- ("A", "B"): 2,
- ("A", "F"): 3,
- ("A", "G"): 5,
- ("A", "E"): 2,
- ("E", "G"): 8,
- ("F", "G"): 3,
- ("B", "G"): 4,
- ("B", "D"): 1,
- ("D", "G"): 3,
- ("G", "C"): 10,
- }
- # This additionally tests the @nx._dispatch mechanism, treating
- # nx.mutual_weight as if it were a re-implementation from another package
- @pytest.mark.parametrize("wrapper", [lambda x: x, dispatch_interface.convert])
- def test_constraint_directed(self, wrapper):
- constraint = nx.constraint(wrapper(self.D))
- assert constraint[0] == pytest.approx(1.003, abs=1e-3)
- assert constraint[1] == pytest.approx(1.003, abs=1e-3)
- assert constraint[2] == pytest.approx(1.389, abs=1e-3)
- def test_effective_size_directed(self):
- effective_size = nx.effective_size(self.D)
- assert effective_size[0] == pytest.approx(1.167, abs=1e-3)
- assert effective_size[1] == pytest.approx(1.167, abs=1e-3)
- assert effective_size[2] == pytest.approx(1, abs=1e-3)
- def test_constraint_weighted_directed(self):
- D = self.D.copy()
- nx.set_edge_attributes(D, self.D_weights, "weight")
- constraint = nx.constraint(D, weight="weight")
- assert constraint[0] == pytest.approx(0.840, abs=1e-3)
- assert constraint[1] == pytest.approx(1.143, abs=1e-3)
- assert constraint[2] == pytest.approx(1.378, abs=1e-3)
- def test_effective_size_weighted_directed(self):
- D = self.D.copy()
- nx.set_edge_attributes(D, self.D_weights, "weight")
- effective_size = nx.effective_size(D, weight="weight")
- assert effective_size[0] == pytest.approx(1.567, abs=1e-3)
- assert effective_size[1] == pytest.approx(1.083, abs=1e-3)
- assert effective_size[2] == pytest.approx(1, abs=1e-3)
- def test_constraint_undirected(self):
- constraint = nx.constraint(self.G)
- assert constraint["G"] == pytest.approx(0.400, abs=1e-3)
- assert constraint["A"] == pytest.approx(0.595, abs=1e-3)
- assert constraint["C"] == pytest.approx(1, abs=1e-3)
- def test_effective_size_undirected_borgatti(self):
- effective_size = nx.effective_size(self.G)
- assert effective_size["G"] == pytest.approx(4.67, abs=1e-2)
- assert effective_size["A"] == pytest.approx(2.50, abs=1e-2)
- assert effective_size["C"] == pytest.approx(1, abs=1e-2)
- def test_effective_size_undirected(self):
- G = self.G.copy()
- nx.set_edge_attributes(G, 1, "weight")
- effective_size = nx.effective_size(G, weight="weight")
- assert effective_size["G"] == pytest.approx(4.67, abs=1e-2)
- assert effective_size["A"] == pytest.approx(2.50, abs=1e-2)
- assert effective_size["C"] == pytest.approx(1, abs=1e-2)
- def test_constraint_weighted_undirected(self):
- G = self.G.copy()
- nx.set_edge_attributes(G, self.G_weights, "weight")
- constraint = nx.constraint(G, weight="weight")
- assert constraint["G"] == pytest.approx(0.299, abs=1e-3)
- assert constraint["A"] == pytest.approx(0.795, abs=1e-3)
- assert constraint["C"] == pytest.approx(1, abs=1e-3)
- def test_effective_size_weighted_undirected(self):
- G = self.G.copy()
- nx.set_edge_attributes(G, self.G_weights, "weight")
- effective_size = nx.effective_size(G, weight="weight")
- assert effective_size["G"] == pytest.approx(5.47, abs=1e-2)
- assert effective_size["A"] == pytest.approx(2.47, abs=1e-2)
- assert effective_size["C"] == pytest.approx(1, abs=1e-2)
- def test_constraint_isolated(self):
- G = self.G.copy()
- G.add_node(1)
- constraint = nx.constraint(G)
- assert math.isnan(constraint[1])
- def test_effective_size_isolated(self):
- G = self.G.copy()
- G.add_node(1)
- nx.set_edge_attributes(G, self.G_weights, "weight")
- effective_size = nx.effective_size(G, weight="weight")
- assert math.isnan(effective_size[1])
- def test_effective_size_borgatti_isolated(self):
- G = self.G.copy()
- G.add_node(1)
- effective_size = nx.effective_size(G)
- assert math.isnan(effective_size[1])
|