123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923 |
- import pytest
- import networkx as nx
- from networkx.algorithms.similarity import (
- graph_edit_distance,
- optimal_edit_paths,
- optimize_graph_edit_distance,
- )
- from networkx.generators.classic import (
- circular_ladder_graph,
- cycle_graph,
- path_graph,
- wheel_graph,
- )
- def nmatch(n1, n2):
- return n1 == n2
- def ematch(e1, e2):
- return e1 == e2
- def getCanonical():
- G = nx.Graph()
- G.add_node("A", label="A")
- G.add_node("B", label="B")
- G.add_node("C", label="C")
- G.add_node("D", label="D")
- G.add_edge("A", "B", label="a-b")
- G.add_edge("B", "C", label="b-c")
- G.add_edge("B", "D", label="b-d")
- return G
- class TestSimilarity:
- @classmethod
- def setup_class(cls):
- global np
- np = pytest.importorskip("numpy")
- pytest.importorskip("scipy")
- def test_graph_edit_distance_roots_and_timeout(self):
- G0 = nx.star_graph(5)
- G1 = G0.copy()
- pytest.raises(ValueError, graph_edit_distance, G0, G1, roots=[2])
- pytest.raises(ValueError, graph_edit_distance, G0, G1, roots=[2, 3, 4])
- pytest.raises(nx.NodeNotFound, graph_edit_distance, G0, G1, roots=(9, 3))
- pytest.raises(nx.NodeNotFound, graph_edit_distance, G0, G1, roots=(3, 9))
- pytest.raises(nx.NodeNotFound, graph_edit_distance, G0, G1, roots=(9, 9))
- assert graph_edit_distance(G0, G1, roots=(1, 2)) == 0
- assert graph_edit_distance(G0, G1, roots=(0, 1)) == 8
- assert graph_edit_distance(G0, G1, roots=(1, 2), timeout=5) == 0
- assert graph_edit_distance(G0, G1, roots=(0, 1), timeout=5) == 8
- assert graph_edit_distance(G0, G1, roots=(0, 1), timeout=0.0001) is None
- # test raise on 0 timeout
- pytest.raises(nx.NetworkXError, graph_edit_distance, G0, G1, timeout=0)
- def test_graph_edit_distance(self):
- G0 = nx.Graph()
- G1 = path_graph(6)
- G2 = cycle_graph(6)
- G3 = wheel_graph(7)
- assert graph_edit_distance(G0, G0) == 0
- assert graph_edit_distance(G0, G1) == 11
- assert graph_edit_distance(G1, G0) == 11
- assert graph_edit_distance(G0, G2) == 12
- assert graph_edit_distance(G2, G0) == 12
- assert graph_edit_distance(G0, G3) == 19
- assert graph_edit_distance(G3, G0) == 19
- assert graph_edit_distance(G1, G1) == 0
- assert graph_edit_distance(G1, G2) == 1
- assert graph_edit_distance(G2, G1) == 1
- assert graph_edit_distance(G1, G3) == 8
- assert graph_edit_distance(G3, G1) == 8
- assert graph_edit_distance(G2, G2) == 0
- assert graph_edit_distance(G2, G3) == 7
- assert graph_edit_distance(G3, G2) == 7
- assert graph_edit_distance(G3, G3) == 0
- def test_graph_edit_distance_node_match(self):
- G1 = cycle_graph(5)
- G2 = cycle_graph(5)
- for n, attr in G1.nodes.items():
- attr["color"] = "red" if n % 2 == 0 else "blue"
- for n, attr in G2.nodes.items():
- attr["color"] = "red" if n % 2 == 1 else "blue"
- assert graph_edit_distance(G1, G2) == 0
- assert (
- graph_edit_distance(
- G1, G2, node_match=lambda n1, n2: n1["color"] == n2["color"]
- )
- == 1
- )
- def test_graph_edit_distance_edge_match(self):
- G1 = path_graph(6)
- G2 = path_graph(6)
- for e, attr in G1.edges.items():
- attr["color"] = "red" if min(e) % 2 == 0 else "blue"
- for e, attr in G2.edges.items():
- attr["color"] = "red" if min(e) // 3 == 0 else "blue"
- assert graph_edit_distance(G1, G2) == 0
- assert (
- graph_edit_distance(
- G1, G2, edge_match=lambda e1, e2: e1["color"] == e2["color"]
- )
- == 2
- )
- def test_graph_edit_distance_node_cost(self):
- G1 = path_graph(6)
- G2 = path_graph(6)
- for n, attr in G1.nodes.items():
- attr["color"] = "red" if n % 2 == 0 else "blue"
- for n, attr in G2.nodes.items():
- attr["color"] = "red" if n % 2 == 1 else "blue"
- def node_subst_cost(uattr, vattr):
- if uattr["color"] == vattr["color"]:
- return 1
- else:
- return 10
- def node_del_cost(attr):
- if attr["color"] == "blue":
- return 20
- else:
- return 50
- def node_ins_cost(attr):
- if attr["color"] == "blue":
- return 40
- else:
- return 100
- assert (
- graph_edit_distance(
- G1,
- G2,
- node_subst_cost=node_subst_cost,
- node_del_cost=node_del_cost,
- node_ins_cost=node_ins_cost,
- )
- == 6
- )
- def test_graph_edit_distance_edge_cost(self):
- G1 = path_graph(6)
- G2 = path_graph(6)
- for e, attr in G1.edges.items():
- attr["color"] = "red" if min(e) % 2 == 0 else "blue"
- for e, attr in G2.edges.items():
- attr["color"] = "red" if min(e) // 3 == 0 else "blue"
- def edge_subst_cost(gattr, hattr):
- if gattr["color"] == hattr["color"]:
- return 0.01
- else:
- return 0.1
- def edge_del_cost(attr):
- if attr["color"] == "blue":
- return 0.2
- else:
- return 0.5
- def edge_ins_cost(attr):
- if attr["color"] == "blue":
- return 0.4
- else:
- return 1.0
- assert (
- graph_edit_distance(
- G1,
- G2,
- edge_subst_cost=edge_subst_cost,
- edge_del_cost=edge_del_cost,
- edge_ins_cost=edge_ins_cost,
- )
- == 0.23
- )
- def test_graph_edit_distance_upper_bound(self):
- G1 = circular_ladder_graph(2)
- G2 = circular_ladder_graph(6)
- assert graph_edit_distance(G1, G2, upper_bound=5) is None
- assert graph_edit_distance(G1, G2, upper_bound=24) == 22
- assert graph_edit_distance(G1, G2) == 22
- def test_optimal_edit_paths(self):
- G1 = path_graph(3)
- G2 = cycle_graph(3)
- paths, cost = optimal_edit_paths(G1, G2)
- assert cost == 1
- assert len(paths) == 6
- def canonical(vertex_path, edge_path):
- return (
- tuple(sorted(vertex_path)),
- tuple(sorted(edge_path, key=lambda x: (None in x, x))),
- )
- expected_paths = [
- (
- [(0, 0), (1, 1), (2, 2)],
- [((0, 1), (0, 1)), ((1, 2), (1, 2)), (None, (0, 2))],
- ),
- (
- [(0, 0), (1, 2), (2, 1)],
- [((0, 1), (0, 2)), ((1, 2), (1, 2)), (None, (0, 1))],
- ),
- (
- [(0, 1), (1, 0), (2, 2)],
- [((0, 1), (0, 1)), ((1, 2), (0, 2)), (None, (1, 2))],
- ),
- (
- [(0, 1), (1, 2), (2, 0)],
- [((0, 1), (1, 2)), ((1, 2), (0, 2)), (None, (0, 1))],
- ),
- (
- [(0, 2), (1, 0), (2, 1)],
- [((0, 1), (0, 2)), ((1, 2), (0, 1)), (None, (1, 2))],
- ),
- (
- [(0, 2), (1, 1), (2, 0)],
- [((0, 1), (1, 2)), ((1, 2), (0, 1)), (None, (0, 2))],
- ),
- ]
- assert {canonical(*p) for p in paths} == {canonical(*p) for p in expected_paths}
- def test_optimize_graph_edit_distance(self):
- G1 = circular_ladder_graph(2)
- G2 = circular_ladder_graph(6)
- bestcost = 1000
- for cost in optimize_graph_edit_distance(G1, G2):
- assert cost < bestcost
- bestcost = cost
- assert bestcost == 22
- # def test_graph_edit_distance_bigger(self):
- # G1 = circular_ladder_graph(12)
- # G2 = circular_ladder_graph(16)
- # assert_equal(graph_edit_distance(G1, G2), 22)
- def test_selfloops(self):
- G0 = nx.Graph()
- G1 = nx.Graph()
- G1.add_edges_from((("A", "A"), ("A", "B")))
- G2 = nx.Graph()
- G2.add_edges_from((("A", "B"), ("B", "B")))
- G3 = nx.Graph()
- G3.add_edges_from((("A", "A"), ("A", "B"), ("B", "B")))
- assert graph_edit_distance(G0, G0) == 0
- assert graph_edit_distance(G0, G1) == 4
- assert graph_edit_distance(G1, G0) == 4
- assert graph_edit_distance(G0, G2) == 4
- assert graph_edit_distance(G2, G0) == 4
- assert graph_edit_distance(G0, G3) == 5
- assert graph_edit_distance(G3, G0) == 5
- assert graph_edit_distance(G1, G1) == 0
- assert graph_edit_distance(G1, G2) == 0
- assert graph_edit_distance(G2, G1) == 0
- assert graph_edit_distance(G1, G3) == 1
- assert graph_edit_distance(G3, G1) == 1
- assert graph_edit_distance(G2, G2) == 0
- assert graph_edit_distance(G2, G3) == 1
- assert graph_edit_distance(G3, G2) == 1
- assert graph_edit_distance(G3, G3) == 0
- def test_digraph(self):
- G0 = nx.DiGraph()
- G1 = nx.DiGraph()
- G1.add_edges_from((("A", "B"), ("B", "C"), ("C", "D"), ("D", "A")))
- G2 = nx.DiGraph()
- G2.add_edges_from((("A", "B"), ("B", "C"), ("C", "D"), ("A", "D")))
- G3 = nx.DiGraph()
- G3.add_edges_from((("A", "B"), ("A", "C"), ("B", "D"), ("C", "D")))
- assert graph_edit_distance(G0, G0) == 0
- assert graph_edit_distance(G0, G1) == 8
- assert graph_edit_distance(G1, G0) == 8
- assert graph_edit_distance(G0, G2) == 8
- assert graph_edit_distance(G2, G0) == 8
- assert graph_edit_distance(G0, G3) == 8
- assert graph_edit_distance(G3, G0) == 8
- assert graph_edit_distance(G1, G1) == 0
- assert graph_edit_distance(G1, G2) == 2
- assert graph_edit_distance(G2, G1) == 2
- assert graph_edit_distance(G1, G3) == 4
- assert graph_edit_distance(G3, G1) == 4
- assert graph_edit_distance(G2, G2) == 0
- assert graph_edit_distance(G2, G3) == 2
- assert graph_edit_distance(G3, G2) == 2
- assert graph_edit_distance(G3, G3) == 0
- def test_multigraph(self):
- G0 = nx.MultiGraph()
- G1 = nx.MultiGraph()
- G1.add_edges_from((("A", "B"), ("B", "C"), ("A", "C")))
- G2 = nx.MultiGraph()
- G2.add_edges_from((("A", "B"), ("B", "C"), ("B", "C"), ("A", "C")))
- G3 = nx.MultiGraph()
- G3.add_edges_from((("A", "B"), ("B", "C"), ("A", "C"), ("A", "C"), ("A", "C")))
- assert graph_edit_distance(G0, G0) == 0
- assert graph_edit_distance(G0, G1) == 6
- assert graph_edit_distance(G1, G0) == 6
- assert graph_edit_distance(G0, G2) == 7
- assert graph_edit_distance(G2, G0) == 7
- assert graph_edit_distance(G0, G3) == 8
- assert graph_edit_distance(G3, G0) == 8
- assert graph_edit_distance(G1, G1) == 0
- assert graph_edit_distance(G1, G2) == 1
- assert graph_edit_distance(G2, G1) == 1
- assert graph_edit_distance(G1, G3) == 2
- assert graph_edit_distance(G3, G1) == 2
- assert graph_edit_distance(G2, G2) == 0
- assert graph_edit_distance(G2, G3) == 1
- assert graph_edit_distance(G3, G2) == 1
- assert graph_edit_distance(G3, G3) == 0
- def test_multidigraph(self):
- G1 = nx.MultiDiGraph()
- G1.add_edges_from(
- (
- ("hardware", "kernel"),
- ("kernel", "hardware"),
- ("kernel", "userspace"),
- ("userspace", "kernel"),
- )
- )
- G2 = nx.MultiDiGraph()
- G2.add_edges_from(
- (
- ("winter", "spring"),
- ("spring", "summer"),
- ("summer", "autumn"),
- ("autumn", "winter"),
- )
- )
- assert graph_edit_distance(G1, G2) == 5
- assert graph_edit_distance(G2, G1) == 5
- # by https://github.com/jfbeaumont
- def testCopy(self):
- G = nx.Graph()
- G.add_node("A", label="A")
- G.add_node("B", label="B")
- G.add_edge("A", "B", label="a-b")
- assert (
- graph_edit_distance(G, G.copy(), node_match=nmatch, edge_match=ematch) == 0
- )
- def testSame(self):
- G1 = nx.Graph()
- G1.add_node("A", label="A")
- G1.add_node("B", label="B")
- G1.add_edge("A", "B", label="a-b")
- G2 = nx.Graph()
- G2.add_node("A", label="A")
- G2.add_node("B", label="B")
- G2.add_edge("A", "B", label="a-b")
- assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 0
- def testOneEdgeLabelDiff(self):
- G1 = nx.Graph()
- G1.add_node("A", label="A")
- G1.add_node("B", label="B")
- G1.add_edge("A", "B", label="a-b")
- G2 = nx.Graph()
- G2.add_node("A", label="A")
- G2.add_node("B", label="B")
- G2.add_edge("A", "B", label="bad")
- assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 1
- def testOneNodeLabelDiff(self):
- G1 = nx.Graph()
- G1.add_node("A", label="A")
- G1.add_node("B", label="B")
- G1.add_edge("A", "B", label="a-b")
- G2 = nx.Graph()
- G2.add_node("A", label="Z")
- G2.add_node("B", label="B")
- G2.add_edge("A", "B", label="a-b")
- assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 1
- def testOneExtraNode(self):
- G1 = nx.Graph()
- G1.add_node("A", label="A")
- G1.add_node("B", label="B")
- G1.add_edge("A", "B", label="a-b")
- G2 = nx.Graph()
- G2.add_node("A", label="A")
- G2.add_node("B", label="B")
- G2.add_edge("A", "B", label="a-b")
- G2.add_node("C", label="C")
- assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 1
- def testOneExtraEdge(self):
- G1 = nx.Graph()
- G1.add_node("A", label="A")
- G1.add_node("B", label="B")
- G1.add_node("C", label="C")
- G1.add_node("C", label="C")
- G1.add_edge("A", "B", label="a-b")
- G2 = nx.Graph()
- G2.add_node("A", label="A")
- G2.add_node("B", label="B")
- G2.add_node("C", label="C")
- G2.add_edge("A", "B", label="a-b")
- G2.add_edge("A", "C", label="a-c")
- assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 1
- def testOneExtraNodeAndEdge(self):
- G1 = nx.Graph()
- G1.add_node("A", label="A")
- G1.add_node("B", label="B")
- G1.add_edge("A", "B", label="a-b")
- G2 = nx.Graph()
- G2.add_node("A", label="A")
- G2.add_node("B", label="B")
- G2.add_node("C", label="C")
- G2.add_edge("A", "B", label="a-b")
- G2.add_edge("A", "C", label="a-c")
- assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 2
- def testGraph1(self):
- G1 = getCanonical()
- G2 = nx.Graph()
- G2.add_node("A", label="A")
- G2.add_node("B", label="B")
- G2.add_node("D", label="D")
- G2.add_node("E", label="E")
- G2.add_edge("A", "B", label="a-b")
- G2.add_edge("B", "D", label="b-d")
- G2.add_edge("D", "E", label="d-e")
- assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 3
- def testGraph2(self):
- G1 = getCanonical()
- G2 = nx.Graph()
- G2.add_node("A", label="A")
- G2.add_node("B", label="B")
- G2.add_node("C", label="C")
- G2.add_node("D", label="D")
- G2.add_node("E", label="E")
- G2.add_edge("A", "B", label="a-b")
- G2.add_edge("B", "C", label="b-c")
- G2.add_edge("C", "D", label="c-d")
- G2.add_edge("C", "E", label="c-e")
- assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 4
- def testGraph3(self):
- G1 = getCanonical()
- G2 = nx.Graph()
- G2.add_node("A", label="A")
- G2.add_node("B", label="B")
- G2.add_node("C", label="C")
- G2.add_node("D", label="D")
- G2.add_node("E", label="E")
- G2.add_node("F", label="F")
- G2.add_node("G", label="G")
- G2.add_edge("A", "C", label="a-c")
- G2.add_edge("A", "D", label="a-d")
- G2.add_edge("D", "E", label="d-e")
- G2.add_edge("D", "F", label="d-f")
- G2.add_edge("D", "G", label="d-g")
- G2.add_edge("E", "B", label="e-b")
- assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 12
- def testGraph4(self):
- G1 = getCanonical()
- G2 = nx.Graph()
- G2.add_node("A", label="A")
- G2.add_node("B", label="B")
- G2.add_node("C", label="C")
- G2.add_node("D", label="D")
- G2.add_edge("A", "B", label="a-b")
- G2.add_edge("B", "C", label="b-c")
- G2.add_edge("C", "D", label="c-d")
- assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 2
- def testGraph4_a(self):
- G1 = getCanonical()
- G2 = nx.Graph()
- G2.add_node("A", label="A")
- G2.add_node("B", label="B")
- G2.add_node("C", label="C")
- G2.add_node("D", label="D")
- G2.add_edge("A", "B", label="a-b")
- G2.add_edge("B", "C", label="b-c")
- G2.add_edge("A", "D", label="a-d")
- assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 2
- def testGraph4_b(self):
- G1 = getCanonical()
- G2 = nx.Graph()
- G2.add_node("A", label="A")
- G2.add_node("B", label="B")
- G2.add_node("C", label="C")
- G2.add_node("D", label="D")
- G2.add_edge("A", "B", label="a-b")
- G2.add_edge("B", "C", label="b-c")
- G2.add_edge("B", "D", label="bad")
- assert graph_edit_distance(G1, G2, node_match=nmatch, edge_match=ematch) == 1
- # note: nx.simrank_similarity_numpy not included because returns np.array
- simrank_algs = [
- nx.simrank_similarity,
- nx.algorithms.similarity._simrank_similarity_python,
- ]
- @pytest.mark.parametrize("simrank_similarity", simrank_algs)
- def test_simrank_no_source_no_target(self, simrank_similarity):
- G = nx.cycle_graph(5)
- expected = {
- 0: {
- 0: 1,
- 1: 0.3951219505902448,
- 2: 0.5707317069281646,
- 3: 0.5707317069281646,
- 4: 0.3951219505902449,
- },
- 1: {
- 0: 0.3951219505902448,
- 1: 1,
- 2: 0.3951219505902449,
- 3: 0.5707317069281646,
- 4: 0.5707317069281646,
- },
- 2: {
- 0: 0.5707317069281646,
- 1: 0.3951219505902449,
- 2: 1,
- 3: 0.3951219505902449,
- 4: 0.5707317069281646,
- },
- 3: {
- 0: 0.5707317069281646,
- 1: 0.5707317069281646,
- 2: 0.3951219505902449,
- 3: 1,
- 4: 0.3951219505902449,
- },
- 4: {
- 0: 0.3951219505902449,
- 1: 0.5707317069281646,
- 2: 0.5707317069281646,
- 3: 0.3951219505902449,
- 4: 1,
- },
- }
- actual = simrank_similarity(G)
- for k, v in expected.items():
- assert v == pytest.approx(actual[k], abs=1e-2)
- # For a DiGraph test, use the first graph from the paper cited in
- # the docs: https://dl.acm.org/doi/pdf/10.1145/775047.775126
- G = nx.DiGraph()
- G.add_node(0, label="Univ")
- G.add_node(1, label="ProfA")
- G.add_node(2, label="ProfB")
- G.add_node(3, label="StudentA")
- G.add_node(4, label="StudentB")
- G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 4), (4, 2), (3, 0)])
- expected = {
- 0: {0: 1, 1: 0.0, 2: 0.1323363991265798, 3: 0.0, 4: 0.03387811817640443},
- 1: {0: 0.0, 1: 1, 2: 0.4135512472705618, 3: 0.0, 4: 0.10586911930126384},
- 2: {
- 0: 0.1323363991265798,
- 1: 0.4135512472705618,
- 2: 1,
- 3: 0.04234764772050554,
- 4: 0.08822426608438655,
- },
- 3: {0: 0.0, 1: 0.0, 2: 0.04234764772050554, 3: 1, 4: 0.3308409978164495},
- 4: {
- 0: 0.03387811817640443,
- 1: 0.10586911930126384,
- 2: 0.08822426608438655,
- 3: 0.3308409978164495,
- 4: 1,
- },
- }
- # Use the importance_factor from the paper to get the same numbers.
- actual = simrank_similarity(G, importance_factor=0.8)
- for k, v in expected.items():
- assert v == pytest.approx(actual[k], abs=1e-2)
- @pytest.mark.parametrize("simrank_similarity", simrank_algs)
- def test_simrank_source_no_target(self, simrank_similarity):
- G = nx.cycle_graph(5)
- expected = {
- 0: 1,
- 1: 0.3951219505902448,
- 2: 0.5707317069281646,
- 3: 0.5707317069281646,
- 4: 0.3951219505902449,
- }
- actual = simrank_similarity(G, source=0)
- assert expected == pytest.approx(actual, abs=1e-2)
- # For a DiGraph test, use the first graph from the paper cited in
- # the docs: https://dl.acm.org/doi/pdf/10.1145/775047.775126
- G = nx.DiGraph()
- G.add_node(0, label="Univ")
- G.add_node(1, label="ProfA")
- G.add_node(2, label="ProfB")
- G.add_node(3, label="StudentA")
- G.add_node(4, label="StudentB")
- G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 4), (4, 2), (3, 0)])
- expected = {0: 1, 1: 0.0, 2: 0.1323363991265798, 3: 0.0, 4: 0.03387811817640443}
- # Use the importance_factor from the paper to get the same numbers.
- actual = simrank_similarity(G, importance_factor=0.8, source=0)
- assert expected == pytest.approx(actual, abs=1e-2)
- @pytest.mark.parametrize("simrank_similarity", simrank_algs)
- def test_simrank_noninteger_nodes(self, simrank_similarity):
- G = nx.cycle_graph(5)
- G = nx.relabel_nodes(G, dict(enumerate("abcde")))
- expected = {
- "a": 1,
- "b": 0.3951219505902448,
- "c": 0.5707317069281646,
- "d": 0.5707317069281646,
- "e": 0.3951219505902449,
- }
- actual = simrank_similarity(G, source="a")
- assert expected == pytest.approx(actual, abs=1e-2)
- # For a DiGraph test, use the first graph from the paper cited in
- # the docs: https://dl.acm.org/doi/pdf/10.1145/775047.775126
- G = nx.DiGraph()
- G.add_node(0, label="Univ")
- G.add_node(1, label="ProfA")
- G.add_node(2, label="ProfB")
- G.add_node(3, label="StudentA")
- G.add_node(4, label="StudentB")
- G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 4), (4, 2), (3, 0)])
- node_labels = dict(enumerate(nx.get_node_attributes(G, "label").values()))
- G = nx.relabel_nodes(G, node_labels)
- expected = {
- "Univ": 1,
- "ProfA": 0.0,
- "ProfB": 0.1323363991265798,
- "StudentA": 0.0,
- "StudentB": 0.03387811817640443,
- }
- # Use the importance_factor from the paper to get the same numbers.
- actual = simrank_similarity(G, importance_factor=0.8, source="Univ")
- assert expected == pytest.approx(actual, abs=1e-2)
- @pytest.mark.parametrize("simrank_similarity", simrank_algs)
- def test_simrank_source_and_target(self, simrank_similarity):
- G = nx.cycle_graph(5)
- expected = 1
- actual = simrank_similarity(G, source=0, target=0)
- assert expected == pytest.approx(actual, abs=1e-2)
- # For a DiGraph test, use the first graph from the paper cited in
- # the docs: https://dl.acm.org/doi/pdf/10.1145/775047.775126
- G = nx.DiGraph()
- G.add_node(0, label="Univ")
- G.add_node(1, label="ProfA")
- G.add_node(2, label="ProfB")
- G.add_node(3, label="StudentA")
- G.add_node(4, label="StudentB")
- G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 4), (4, 2), (3, 0)])
- expected = 0.1323363991265798
- # Use the importance_factor from the paper to get the same numbers.
- # Use the pair (0,2) because (0,0) and (0,1) have trivial results.
- actual = simrank_similarity(G, importance_factor=0.8, source=0, target=2)
- assert expected == pytest.approx(actual, abs=1e-5)
- @pytest.mark.parametrize("alg", simrank_algs)
- def test_simrank_max_iterations(self, alg):
- G = nx.cycle_graph(5)
- pytest.raises(nx.ExceededMaxIterations, alg, G, max_iterations=10)
- def test_simrank_between_versions(self):
- G = nx.cycle_graph(5)
- # _python tolerance 1e-4
- expected_python_tol4 = {
- 0: 1,
- 1: 0.394512499239852,
- 2: 0.5703550452791322,
- 3: 0.5703550452791323,
- 4: 0.394512499239852,
- }
- # _numpy tolerance 1e-4
- expected_numpy_tol4 = {
- 0: 1.0,
- 1: 0.3947180735764555,
- 2: 0.570482097206368,
- 3: 0.570482097206368,
- 4: 0.3947180735764555,
- }
- actual = nx.simrank_similarity(G, source=0)
- assert expected_numpy_tol4 == pytest.approx(actual, abs=1e-7)
- # versions differ at 1e-4 level but equal at 1e-3
- assert expected_python_tol4 != pytest.approx(actual, abs=1e-4)
- assert expected_python_tol4 == pytest.approx(actual, abs=1e-3)
- actual = nx.similarity._simrank_similarity_python(G, source=0)
- assert expected_python_tol4 == pytest.approx(actual, abs=1e-7)
- # versions differ at 1e-4 level but equal at 1e-3
- assert expected_numpy_tol4 != pytest.approx(actual, abs=1e-4)
- assert expected_numpy_tol4 == pytest.approx(actual, abs=1e-3)
- def test_simrank_numpy_no_source_no_target(self):
- G = nx.cycle_graph(5)
- expected = np.array(
- [
- [
- 1.0,
- 0.3947180735764555,
- 0.570482097206368,
- 0.570482097206368,
- 0.3947180735764555,
- ],
- [
- 0.3947180735764555,
- 1.0,
- 0.3947180735764555,
- 0.570482097206368,
- 0.570482097206368,
- ],
- [
- 0.570482097206368,
- 0.3947180735764555,
- 1.0,
- 0.3947180735764555,
- 0.570482097206368,
- ],
- [
- 0.570482097206368,
- 0.570482097206368,
- 0.3947180735764555,
- 1.0,
- 0.3947180735764555,
- ],
- [
- 0.3947180735764555,
- 0.570482097206368,
- 0.570482097206368,
- 0.3947180735764555,
- 1.0,
- ],
- ]
- )
- actual = nx.similarity._simrank_similarity_numpy(G)
- np.testing.assert_allclose(expected, actual, atol=1e-7)
- def test_simrank_numpy_source_no_target(self):
- G = nx.cycle_graph(5)
- expected = np.array(
- [
- 1.0,
- 0.3947180735764555,
- 0.570482097206368,
- 0.570482097206368,
- 0.3947180735764555,
- ]
- )
- actual = nx.similarity._simrank_similarity_numpy(G, source=0)
- np.testing.assert_allclose(expected, actual, atol=1e-7)
- def test_simrank_numpy_source_and_target(self):
- G = nx.cycle_graph(5)
- expected = 1.0
- actual = nx.similarity._simrank_similarity_numpy(G, source=0, target=0)
- np.testing.assert_allclose(expected, actual, atol=1e-7)
- def test_panther_similarity_unweighted(self):
- np.random.seed(42)
- G = nx.Graph()
- G.add_edge(0, 1)
- G.add_edge(0, 2)
- G.add_edge(0, 3)
- G.add_edge(1, 2)
- G.add_edge(2, 4)
- expected = {3: 0.5, 2: 0.5, 1: 0.5, 4: 0.125}
- sim = nx.panther_similarity(G, 0, path_length=2)
- assert sim == expected
- def test_panther_similarity_weighted(self):
- np.random.seed(42)
- G = nx.Graph()
- G.add_edge("v1", "v2", weight=5)
- G.add_edge("v1", "v3", weight=1)
- G.add_edge("v1", "v4", weight=2)
- G.add_edge("v2", "v3", weight=0.1)
- G.add_edge("v3", "v5", weight=1)
- expected = {"v3": 0.75, "v4": 0.5, "v2": 0.5, "v5": 0.25}
- sim = nx.panther_similarity(G, "v1", path_length=2)
- assert sim == expected
- def test_generate_random_paths_unweighted(self):
- np.random.seed(42)
- index_map = {}
- num_paths = 10
- path_length = 2
- G = nx.Graph()
- G.add_edge(0, 1)
- G.add_edge(0, 2)
- G.add_edge(0, 3)
- G.add_edge(1, 2)
- G.add_edge(2, 4)
- paths = nx.generate_random_paths(
- G, num_paths, path_length=path_length, index_map=index_map
- )
- expected_paths = [
- [3, 0, 3],
- [4, 2, 1],
- [2, 1, 0],
- [2, 0, 3],
- [3, 0, 1],
- [3, 0, 1],
- [4, 2, 0],
- [2, 1, 0],
- [3, 0, 2],
- [2, 1, 2],
- ]
- expected_map = {
- 0: {0, 2, 3, 4, 5, 6, 7, 8},
- 1: {1, 2, 4, 5, 7, 9},
- 2: {1, 2, 3, 6, 7, 8, 9},
- 3: {0, 3, 4, 5, 8},
- 4: {1, 6},
- }
- assert expected_paths == list(paths)
- assert expected_map == index_map
- def test_generate_random_paths_weighted(self):
- np.random.seed(42)
- index_map = {}
- num_paths = 10
- path_length = 6
- G = nx.Graph()
- G.add_edge("a", "b", weight=0.6)
- G.add_edge("a", "c", weight=0.2)
- G.add_edge("c", "d", weight=0.1)
- G.add_edge("c", "e", weight=0.7)
- G.add_edge("c", "f", weight=0.9)
- G.add_edge("a", "d", weight=0.3)
- paths = nx.generate_random_paths(
- G, num_paths, path_length=path_length, index_map=index_map
- )
- expected_paths = [
- ["d", "c", "f", "c", "d", "a", "b"],
- ["e", "c", "f", "c", "f", "c", "e"],
- ["d", "a", "b", "a", "b", "a", "c"],
- ["b", "a", "d", "a", "b", "a", "b"],
- ["d", "a", "b", "a", "b", "a", "d"],
- ["d", "a", "b", "a", "b", "a", "c"],
- ["d", "a", "b", "a", "b", "a", "b"],
- ["f", "c", "f", "c", "f", "c", "e"],
- ["d", "a", "d", "a", "b", "a", "b"],
- ["e", "c", "f", "c", "e", "c", "d"],
- ]
- expected_map = {
- "d": {0, 2, 3, 4, 5, 6, 8, 9},
- "c": {0, 1, 2, 5, 7, 9},
- "f": {0, 1, 9, 7},
- "a": {0, 2, 3, 4, 5, 6, 8},
- "b": {0, 2, 3, 4, 5, 6, 8},
- "e": {1, 9, 7},
- }
- assert expected_paths == list(paths)
- assert expected_map == index_map
- def test_symmetry_with_custom_matching(self):
- print("G2 is edge (a,b) and G3 is edge (a,a)")
- print("but node order for G2 is (a,b) while for G3 it is (b,a)")
- a, b = "A", "B"
- G2 = nx.Graph()
- G2.add_nodes_from((a, b))
- G2.add_edges_from([(a, b)])
- G3 = nx.Graph()
- G3.add_nodes_from((b, a))
- G3.add_edges_from([(a, a)])
- for G in (G2, G3):
- for n in G:
- G.nodes[n]["attr"] = n
- for e in G.edges:
- G.edges[e]["attr"] = e
- match = lambda x, y: x == y
- print("Starting G2 to G3 GED calculation")
- assert nx.graph_edit_distance(G2, G3, node_match=match, edge_match=match) == 1
- print("Starting G3 to G2 GED calculation")
- assert nx.graph_edit_distance(G3, G2, node_match=match, edge_match=match) == 1
|