123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274 |
- import math
- import pytest
- import networkx as nx
- from networkx.algorithms.planar_drawing import triangulate_embedding
- def test_graph1():
- embedding_data = {0: [1, 2, 3], 1: [2, 0], 2: [3, 0, 1], 3: [2, 0]}
- check_embedding_data(embedding_data)
- def test_graph2():
- embedding_data = {
- 0: [8, 6],
- 1: [2, 6, 9],
- 2: [8, 1, 7, 9, 6, 4],
- 3: [9],
- 4: [2],
- 5: [6, 8],
- 6: [9, 1, 0, 5, 2],
- 7: [9, 2],
- 8: [0, 2, 5],
- 9: [1, 6, 2, 7, 3],
- }
- check_embedding_data(embedding_data)
- def test_circle_graph():
- embedding_data = {
- 0: [1, 9],
- 1: [0, 2],
- 2: [1, 3],
- 3: [2, 4],
- 4: [3, 5],
- 5: [4, 6],
- 6: [5, 7],
- 7: [6, 8],
- 8: [7, 9],
- 9: [8, 0],
- }
- check_embedding_data(embedding_data)
- def test_grid_graph():
- embedding_data = {
- (0, 1): [(0, 0), (1, 1), (0, 2)],
- (1, 2): [(1, 1), (2, 2), (0, 2)],
- (0, 0): [(0, 1), (1, 0)],
- (2, 1): [(2, 0), (2, 2), (1, 1)],
- (1, 1): [(2, 1), (1, 2), (0, 1), (1, 0)],
- (2, 0): [(1, 0), (2, 1)],
- (2, 2): [(1, 2), (2, 1)],
- (1, 0): [(0, 0), (2, 0), (1, 1)],
- (0, 2): [(1, 2), (0, 1)],
- }
- check_embedding_data(embedding_data)
- def test_one_node_graph():
- embedding_data = {0: []}
- check_embedding_data(embedding_data)
- def test_two_node_graph():
- embedding_data = {0: [1], 1: [0]}
- check_embedding_data(embedding_data)
- def test_three_node_graph():
- embedding_data = {0: [1, 2], 1: [0, 2], 2: [0, 1]}
- check_embedding_data(embedding_data)
- def test_multiple_component_graph1():
- embedding_data = {0: [], 1: []}
- check_embedding_data(embedding_data)
- def test_multiple_component_graph2():
- embedding_data = {0: [1, 2], 1: [0, 2], 2: [0, 1], 3: [4, 5], 4: [3, 5], 5: [3, 4]}
- check_embedding_data(embedding_data)
- def test_invalid_half_edge():
- with pytest.raises(nx.NetworkXException):
- embedding_data = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2, 4], 4: [1, 2, 3]}
- embedding = nx.PlanarEmbedding()
- embedding.set_data(embedding_data)
- nx.combinatorial_embedding_to_pos(embedding)
- def test_triangulate_embedding1():
- embedding = nx.PlanarEmbedding()
- embedding.add_node(1)
- expected_embedding = {1: []}
- check_triangulation(embedding, expected_embedding)
- def test_triangulate_embedding2():
- embedding = nx.PlanarEmbedding()
- embedding.connect_components(1, 2)
- expected_embedding = {1: [2], 2: [1]}
- check_triangulation(embedding, expected_embedding)
- def check_triangulation(embedding, expected_embedding):
- res_embedding, _ = triangulate_embedding(embedding, True)
- assert (
- res_embedding.get_data() == expected_embedding
- ), "Expected embedding incorrect"
- res_embedding, _ = triangulate_embedding(embedding, False)
- assert (
- res_embedding.get_data() == expected_embedding
- ), "Expected embedding incorrect"
- def check_embedding_data(embedding_data):
- """Checks that the planar embedding of the input is correct"""
- embedding = nx.PlanarEmbedding()
- embedding.set_data(embedding_data)
- pos_fully = nx.combinatorial_embedding_to_pos(embedding, False)
- msg = "Planar drawing does not conform to the embedding (fully " "triangulation)"
- assert planar_drawing_conforms_to_embedding(embedding, pos_fully), msg
- check_edge_intersections(embedding, pos_fully)
- pos_internally = nx.combinatorial_embedding_to_pos(embedding, True)
- msg = "Planar drawing does not conform to the embedding (internal " "triangulation)"
- assert planar_drawing_conforms_to_embedding(embedding, pos_internally), msg
- check_edge_intersections(embedding, pos_internally)
- def is_close(a, b, rel_tol=1e-09, abs_tol=0.0):
- # Check if float numbers are basically equal, for python >=3.5 there is
- # function for that in the standard library
- return abs(a - b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)
- def point_in_between(a, b, p):
- # checks if p is on the line between a and b
- x1, y1 = a
- x2, y2 = b
- px, py = p
- dist_1_2 = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
- dist_1_p = math.sqrt((x1 - px) ** 2 + (y1 - py) ** 2)
- dist_2_p = math.sqrt((x2 - px) ** 2 + (y2 - py) ** 2)
- return is_close(dist_1_p + dist_2_p, dist_1_2)
- def check_edge_intersections(G, pos):
- """Check all edges in G for intersections.
- Raises an exception if an intersection is found.
- Parameters
- ----------
- G : NetworkX graph
- pos : dict
- Maps every node to a tuple (x, y) representing its position
- """
- for a, b in G.edges():
- for c, d in G.edges():
- # Check if end points are different
- if a != c and b != d and b != c and a != d:
- x1, y1 = pos[a]
- x2, y2 = pos[b]
- x3, y3 = pos[c]
- x4, y4 = pos[d]
- determinant = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4)
- if determinant != 0: # the lines are not parallel
- # calculate intersection point, see:
- # https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection
- px = (x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (
- x3 * y4 - y3 * x4
- ) / determinant
- py = (x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (
- x3 * y4 - y3 * x4
- ) / determinant
- # Check if intersection lies between the points
- if point_in_between(pos[a], pos[b], (px, py)) and point_in_between(
- pos[c], pos[d], (px, py)
- ):
- msg = f"There is an intersection at {px},{py}"
- raise nx.NetworkXException(msg)
- # Check overlap
- msg = "A node lies on a edge connecting two other nodes"
- if (
- point_in_between(pos[a], pos[b], pos[c])
- or point_in_between(pos[a], pos[b], pos[d])
- or point_in_between(pos[c], pos[d], pos[a])
- or point_in_between(pos[c], pos[d], pos[b])
- ):
- raise nx.NetworkXException(msg)
- # No edge intersection found
- class Vector:
- """Compare vectors by their angle without loss of precision
- All vectors in direction [0, 1] are the smallest.
- The vectors grow in clockwise direction.
- """
- __slots__ = ["x", "y", "node", "quadrant"]
- def __init__(self, x, y, node):
- self.x = x
- self.y = y
- self.node = node
- if self.x >= 0 and self.y > 0:
- self.quadrant = 1
- elif self.x > 0 and self.y <= 0:
- self.quadrant = 2
- elif self.x <= 0 and self.y < 0:
- self.quadrant = 3
- else:
- self.quadrant = 4
- def __eq__(self, other):
- return self.quadrant == other.quadrant and self.x * other.y == self.y * other.x
- def __lt__(self, other):
- if self.quadrant < other.quadrant:
- return True
- elif self.quadrant > other.quadrant:
- return False
- else:
- return self.x * other.y < self.y * other.x
- def __ne__(self, other):
- return self != other
- def __le__(self, other):
- return not other < self
- def __gt__(self, other):
- return other < self
- def __ge__(self, other):
- return not self < other
- def planar_drawing_conforms_to_embedding(embedding, pos):
- """Checks if pos conforms to the planar embedding
- Returns true iff the neighbors are actually oriented in the orientation
- specified of the embedding
- """
- for v in embedding:
- nbr_vectors = []
- v_pos = pos[v]
- for nbr in embedding[v]:
- new_vector = Vector(pos[nbr][0] - v_pos[0], pos[nbr][1] - v_pos[1], nbr)
- nbr_vectors.append(new_vector)
- # Sort neighbors according to their phi angle
- nbr_vectors.sort()
- for idx, nbr_vector in enumerate(nbr_vectors):
- cw_vector = nbr_vectors[(idx + 1) % len(nbr_vectors)]
- ccw_vector = nbr_vectors[idx - 1]
- if (
- embedding[v][nbr_vector.node]["cw"] != cw_vector.node
- or embedding[v][nbr_vector.node]["ccw"] != ccw_vector.node
- ):
- return False
- if cw_vector.node != nbr_vector.node and cw_vector == nbr_vector:
- # Lines overlap
- return False
- if ccw_vector.node != nbr_vector.node and ccw_vector == nbr_vector:
- # Lines overlap
- return False
- return True
|