123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294 |
- """Functions for computing sparsifiers of graphs."""
- import math
- import networkx as nx
- from networkx.utils import not_implemented_for, py_random_state
- __all__ = ["spanner"]
- @py_random_state(3)
- @not_implemented_for("directed")
- @not_implemented_for("multigraph")
- def spanner(G, stretch, weight=None, seed=None):
- """Returns a spanner of the given graph with the given stretch.
- A spanner of a graph G = (V, E) with stretch t is a subgraph
- H = (V, E_S) such that E_S is a subset of E and the distance between
- any pair of nodes in H is at most t times the distance between the
- nodes in G.
- Parameters
- ----------
- G : NetworkX graph
- An undirected simple graph.
- stretch : float
- The stretch of the spanner.
- weight : object
- The edge attribute to use as distance.
- seed : integer, random_state, or None (default)
- Indicator of random number generation state.
- See :ref:`Randomness<randomness>`.
- Returns
- -------
- NetworkX graph
- A spanner of the given graph with the given stretch.
- Raises
- ------
- ValueError
- If a stretch less than 1 is given.
- Notes
- -----
- This function implements the spanner algorithm by Baswana and Sen,
- see [1].
- This algorithm is a randomized las vegas algorithm: The expected
- running time is O(km) where k = (stretch + 1) // 2 and m is the
- number of edges in G. The returned graph is always a spanner of the
- given graph with the specified stretch. For weighted graphs the
- number of edges in the spanner is O(k * n^(1 + 1 / k)) where k is
- defined as above and n is the number of nodes in G. For unweighted
- graphs the number of edges is O(n^(1 + 1 / k) + kn).
- References
- ----------
- [1] S. Baswana, S. Sen. A Simple and Linear Time Randomized
- Algorithm for Computing Sparse Spanners in Weighted Graphs.
- Random Struct. Algorithms 30(4): 532-563 (2007).
- """
- if stretch < 1:
- raise ValueError("stretch must be at least 1")
- k = (stretch + 1) // 2
- # initialize spanner H with empty edge set
- H = nx.empty_graph()
- H.add_nodes_from(G.nodes)
- # phase 1: forming the clusters
- # the residual graph has V' from the paper as its node set
- # and E' from the paper as its edge set
- residual_graph = _setup_residual_graph(G, weight)
- # clustering is a dictionary that maps nodes in a cluster to the
- # cluster center
- clustering = {v: v for v in G.nodes}
- sample_prob = math.pow(G.number_of_nodes(), -1 / k)
- size_limit = 2 * math.pow(G.number_of_nodes(), 1 + 1 / k)
- i = 0
- while i < k - 1:
- # step 1: sample centers
- sampled_centers = set()
- for center in set(clustering.values()):
- if seed.random() < sample_prob:
- sampled_centers.add(center)
- # combined loop for steps 2 and 3
- edges_to_add = set()
- edges_to_remove = set()
- new_clustering = {}
- for v in residual_graph.nodes:
- if clustering[v] in sampled_centers:
- continue
- # step 2: find neighboring (sampled) clusters and
- # lightest edges to them
- lightest_edge_neighbor, lightest_edge_weight = _lightest_edge_dicts(
- residual_graph, clustering, v
- )
- neighboring_sampled_centers = (
- set(lightest_edge_weight.keys()) & sampled_centers
- )
- # step 3: add edges to spanner
- if not neighboring_sampled_centers:
- # connect to each neighboring center via lightest edge
- for neighbor in lightest_edge_neighbor.values():
- edges_to_add.add((v, neighbor))
- # remove all incident edges
- for neighbor in residual_graph.adj[v]:
- edges_to_remove.add((v, neighbor))
- else: # there is a neighboring sampled center
- closest_center = min(
- neighboring_sampled_centers, key=lightest_edge_weight.get
- )
- closest_center_weight = lightest_edge_weight[closest_center]
- closest_center_neighbor = lightest_edge_neighbor[closest_center]
- edges_to_add.add((v, closest_center_neighbor))
- new_clustering[v] = closest_center
- # connect to centers with edge weight less than
- # closest_center_weight
- for center, edge_weight in lightest_edge_weight.items():
- if edge_weight < closest_center_weight:
- neighbor = lightest_edge_neighbor[center]
- edges_to_add.add((v, neighbor))
- # remove edges to centers with edge weight less than
- # closest_center_weight
- for neighbor in residual_graph.adj[v]:
- neighbor_cluster = clustering[neighbor]
- neighbor_weight = lightest_edge_weight[neighbor_cluster]
- if (
- neighbor_cluster == closest_center
- or neighbor_weight < closest_center_weight
- ):
- edges_to_remove.add((v, neighbor))
- # check whether iteration added too many edges to spanner,
- # if so repeat
- if len(edges_to_add) > size_limit:
- # an iteration is repeated O(1) times on expectation
- continue
- # iteration succeeded
- i = i + 1
- # actually add edges to spanner
- for u, v in edges_to_add:
- _add_edge_to_spanner(H, residual_graph, u, v, weight)
- # actually delete edges from residual graph
- residual_graph.remove_edges_from(edges_to_remove)
- # copy old clustering data to new_clustering
- for node, center in clustering.items():
- if center in sampled_centers:
- new_clustering[node] = center
- clustering = new_clustering
- # step 4: remove intra-cluster edges
- for u in residual_graph.nodes:
- for v in list(residual_graph.adj[u]):
- if clustering[u] == clustering[v]:
- residual_graph.remove_edge(u, v)
- # update residual graph node set
- for v in list(residual_graph.nodes):
- if v not in clustering:
- residual_graph.remove_node(v)
- # phase 2: vertex-cluster joining
- for v in residual_graph.nodes:
- lightest_edge_neighbor, _ = _lightest_edge_dicts(residual_graph, clustering, v)
- for neighbor in lightest_edge_neighbor.values():
- _add_edge_to_spanner(H, residual_graph, v, neighbor, weight)
- return H
- def _setup_residual_graph(G, weight):
- """Setup residual graph as a copy of G with unique edges weights.
- The node set of the residual graph corresponds to the set V' from
- the Baswana-Sen paper and the edge set corresponds to the set E'
- from the paper.
- This function associates distinct weights to the edges of the
- residual graph (even for unweighted input graphs), as required by
- the algorithm.
- Parameters
- ----------
- G : NetworkX graph
- An undirected simple graph.
- weight : object
- The edge attribute to use as distance.
- Returns
- -------
- NetworkX graph
- The residual graph used for the Baswana-Sen algorithm.
- """
- residual_graph = G.copy()
- # establish unique edge weights, even for unweighted graphs
- for u, v in G.edges():
- if not weight:
- residual_graph[u][v]["weight"] = (id(u), id(v))
- else:
- residual_graph[u][v]["weight"] = (G[u][v][weight], id(u), id(v))
- return residual_graph
- def _lightest_edge_dicts(residual_graph, clustering, node):
- """Find the lightest edge to each cluster.
- Searches for the minimum-weight edge to each cluster adjacent to
- the given node.
- Parameters
- ----------
- residual_graph : NetworkX graph
- The residual graph used by the Baswana-Sen algorithm.
- clustering : dictionary
- The current clustering of the nodes.
- node : node
- The node from which the search originates.
- Returns
- -------
- lightest_edge_neighbor, lightest_edge_weight : dictionary, dictionary
- lightest_edge_neighbor is a dictionary that maps a center C to
- a node v in the corresponding cluster such that the edge from
- the given node to v is the lightest edge from the given node to
- any node in cluster. lightest_edge_weight maps a center C to the
- weight of the aforementioned edge.
- Notes
- -----
- If a cluster has no node that is adjacent to the given node in the
- residual graph then the center of the cluster is not a key in the
- returned dictionaries.
- """
- lightest_edge_neighbor = {}
- lightest_edge_weight = {}
- for neighbor in residual_graph.adj[node]:
- neighbor_center = clustering[neighbor]
- weight = residual_graph[node][neighbor]["weight"]
- if (
- neighbor_center not in lightest_edge_weight
- or weight < lightest_edge_weight[neighbor_center]
- ):
- lightest_edge_neighbor[neighbor_center] = neighbor
- lightest_edge_weight[neighbor_center] = weight
- return lightest_edge_neighbor, lightest_edge_weight
- def _add_edge_to_spanner(H, residual_graph, u, v, weight):
- """Add the edge {u, v} to the spanner H and take weight from
- the residual graph.
- Parameters
- ----------
- H : NetworkX graph
- The spanner under construction.
- residual_graph : NetworkX graph
- The residual graph used by the Baswana-Sen algorithm. The weight
- for the edge is taken from this graph.
- u : node
- One endpoint of the edge.
- v : node
- The other endpoint of the edge.
- weight : object
- The edge attribute to use as distance.
- """
- H.add_edge(u, v)
- if weight:
- H[u][v][weight] = residual_graph[u][v]["weight"][0]
|