1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690 |
- """ Functions measuring similarity using graph edit distance.
- The graph edit distance is the number of edge/node changes needed
- to make two graphs isomorphic.
- The default algorithm/implementation is sub-optimal for some graphs.
- The problem of finding the exact Graph Edit Distance (GED) is NP-hard
- so it is often slow. If the simple interface `graph_edit_distance`
- takes too long for your graph, try `optimize_graph_edit_distance`
- and/or `optimize_edit_paths`.
- At the same time, I encourage capable people to investigate
- alternative GED algorithms, in order to improve the choices available.
- """
- import math
- import time
- import warnings
- from dataclasses import dataclass
- from itertools import product
- import networkx as nx
- __all__ = [
- "graph_edit_distance",
- "optimal_edit_paths",
- "optimize_graph_edit_distance",
- "optimize_edit_paths",
- "simrank_similarity",
- "panther_similarity",
- "generate_random_paths",
- ]
- def debug_print(*args, **kwargs):
- print(*args, **kwargs)
- def graph_edit_distance(
- G1,
- G2,
- node_match=None,
- edge_match=None,
- node_subst_cost=None,
- node_del_cost=None,
- node_ins_cost=None,
- edge_subst_cost=None,
- edge_del_cost=None,
- edge_ins_cost=None,
- roots=None,
- upper_bound=None,
- timeout=None,
- ):
- """Returns GED (graph edit distance) between graphs G1 and G2.
- Graph edit distance is a graph similarity measure analogous to
- Levenshtein distance for strings. It is defined as minimum cost
- of edit path (sequence of node and edge edit operations)
- transforming graph G1 to graph isomorphic to G2.
- Parameters
- ----------
- G1, G2: graphs
- The two graphs G1 and G2 must be of the same type.
- node_match : callable
- A function that returns True if node n1 in G1 and n2 in G2
- should be considered equal during matching.
- The function will be called like
- node_match(G1.nodes[n1], G2.nodes[n2]).
- That is, the function will receive the node attribute
- dictionaries for n1 and n2 as inputs.
- Ignored if node_subst_cost is specified. If neither
- node_match nor node_subst_cost are specified then node
- attributes are not considered.
- edge_match : callable
- A function that returns True if the edge attribute dictionaries
- for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
- be considered equal during matching.
- The function will be called like
- edge_match(G1[u1][v1], G2[u2][v2]).
- That is, the function will receive the edge attribute
- dictionaries of the edges under consideration.
- Ignored if edge_subst_cost is specified. If neither
- edge_match nor edge_subst_cost are specified then edge
- attributes are not considered.
- node_subst_cost, node_del_cost, node_ins_cost : callable
- Functions that return the costs of node substitution, node
- deletion, and node insertion, respectively.
- The functions will be called like
- node_subst_cost(G1.nodes[n1], G2.nodes[n2]),
- node_del_cost(G1.nodes[n1]),
- node_ins_cost(G2.nodes[n2]).
- That is, the functions will receive the node attribute
- dictionaries as inputs. The functions are expected to return
- positive numeric values.
- Function node_subst_cost overrides node_match if specified.
- If neither node_match nor node_subst_cost are specified then
- default node substitution cost of 0 is used (node attributes
- are not considered during matching).
- If node_del_cost is not specified then default node deletion
- cost of 1 is used. If node_ins_cost is not specified then
- default node insertion cost of 1 is used.
- edge_subst_cost, edge_del_cost, edge_ins_cost : callable
- Functions that return the costs of edge substitution, edge
- deletion, and edge insertion, respectively.
- The functions will be called like
- edge_subst_cost(G1[u1][v1], G2[u2][v2]),
- edge_del_cost(G1[u1][v1]),
- edge_ins_cost(G2[u2][v2]).
- That is, the functions will receive the edge attribute
- dictionaries as inputs. The functions are expected to return
- positive numeric values.
- Function edge_subst_cost overrides edge_match if specified.
- If neither edge_match nor edge_subst_cost are specified then
- default edge substitution cost of 0 is used (edge attributes
- are not considered during matching).
- If edge_del_cost is not specified then default edge deletion
- cost of 1 is used. If edge_ins_cost is not specified then
- default edge insertion cost of 1 is used.
- roots : 2-tuple
- Tuple where first element is a node in G1 and the second
- is a node in G2.
- These nodes are forced to be matched in the comparison to
- allow comparison between rooted graphs.
- upper_bound : numeric
- Maximum edit distance to consider. Return None if no edit
- distance under or equal to upper_bound exists.
- timeout : numeric
- Maximum number of seconds to execute.
- After timeout is met, the current best GED is returned.
- Examples
- --------
- >>> G1 = nx.cycle_graph(6)
- >>> G2 = nx.wheel_graph(7)
- >>> nx.graph_edit_distance(G1, G2)
- 7.0
- >>> G1 = nx.star_graph(5)
- >>> G2 = nx.star_graph(5)
- >>> nx.graph_edit_distance(G1, G2, roots=(0, 0))
- 0.0
- >>> nx.graph_edit_distance(G1, G2, roots=(1, 0))
- 8.0
- See Also
- --------
- optimal_edit_paths, optimize_graph_edit_distance,
- is_isomorphic: test for graph edit distance of 0
- References
- ----------
- .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick
- Martineau. An Exact Graph Edit Distance Algorithm for Solving
- Pattern Recognition Problems. 4th International Conference on
- Pattern Recognition Applications and Methods 2015, Jan 2015,
- Lisbon, Portugal. 2015,
- <10.5220/0005209202710278>. <hal-01168816>
- https://hal.archives-ouvertes.fr/hal-01168816
- """
- bestcost = None
- for _, _, cost in optimize_edit_paths(
- G1,
- G2,
- node_match,
- edge_match,
- node_subst_cost,
- node_del_cost,
- node_ins_cost,
- edge_subst_cost,
- edge_del_cost,
- edge_ins_cost,
- upper_bound,
- True,
- roots,
- timeout,
- ):
- # assert bestcost is None or cost < bestcost
- bestcost = cost
- return bestcost
- def optimal_edit_paths(
- G1,
- G2,
- node_match=None,
- edge_match=None,
- node_subst_cost=None,
- node_del_cost=None,
- node_ins_cost=None,
- edge_subst_cost=None,
- edge_del_cost=None,
- edge_ins_cost=None,
- upper_bound=None,
- ):
- """Returns all minimum-cost edit paths transforming G1 to G2.
- Graph edit path is a sequence of node and edge edit operations
- transforming graph G1 to graph isomorphic to G2. Edit operations
- include substitutions, deletions, and insertions.
- Parameters
- ----------
- G1, G2: graphs
- The two graphs G1 and G2 must be of the same type.
- node_match : callable
- A function that returns True if node n1 in G1 and n2 in G2
- should be considered equal during matching.
- The function will be called like
- node_match(G1.nodes[n1], G2.nodes[n2]).
- That is, the function will receive the node attribute
- dictionaries for n1 and n2 as inputs.
- Ignored if node_subst_cost is specified. If neither
- node_match nor node_subst_cost are specified then node
- attributes are not considered.
- edge_match : callable
- A function that returns True if the edge attribute dictionaries
- for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
- be considered equal during matching.
- The function will be called like
- edge_match(G1[u1][v1], G2[u2][v2]).
- That is, the function will receive the edge attribute
- dictionaries of the edges under consideration.
- Ignored if edge_subst_cost is specified. If neither
- edge_match nor edge_subst_cost are specified then edge
- attributes are not considered.
- node_subst_cost, node_del_cost, node_ins_cost : callable
- Functions that return the costs of node substitution, node
- deletion, and node insertion, respectively.
- The functions will be called like
- node_subst_cost(G1.nodes[n1], G2.nodes[n2]),
- node_del_cost(G1.nodes[n1]),
- node_ins_cost(G2.nodes[n2]).
- That is, the functions will receive the node attribute
- dictionaries as inputs. The functions are expected to return
- positive numeric values.
- Function node_subst_cost overrides node_match if specified.
- If neither node_match nor node_subst_cost are specified then
- default node substitution cost of 0 is used (node attributes
- are not considered during matching).
- If node_del_cost is not specified then default node deletion
- cost of 1 is used. If node_ins_cost is not specified then
- default node insertion cost of 1 is used.
- edge_subst_cost, edge_del_cost, edge_ins_cost : callable
- Functions that return the costs of edge substitution, edge
- deletion, and edge insertion, respectively.
- The functions will be called like
- edge_subst_cost(G1[u1][v1], G2[u2][v2]),
- edge_del_cost(G1[u1][v1]),
- edge_ins_cost(G2[u2][v2]).
- That is, the functions will receive the edge attribute
- dictionaries as inputs. The functions are expected to return
- positive numeric values.
- Function edge_subst_cost overrides edge_match if specified.
- If neither edge_match nor edge_subst_cost are specified then
- default edge substitution cost of 0 is used (edge attributes
- are not considered during matching).
- If edge_del_cost is not specified then default edge deletion
- cost of 1 is used. If edge_ins_cost is not specified then
- default edge insertion cost of 1 is used.
- upper_bound : numeric
- Maximum edit distance to consider.
- Returns
- -------
- edit_paths : list of tuples (node_edit_path, edge_edit_path)
- node_edit_path : list of tuples (u, v)
- edge_edit_path : list of tuples ((u1, v1), (u2, v2))
- cost : numeric
- Optimal edit path cost (graph edit distance).
- Examples
- --------
- >>> G1 = nx.cycle_graph(4)
- >>> G2 = nx.wheel_graph(5)
- >>> paths, cost = nx.optimal_edit_paths(G1, G2)
- >>> len(paths)
- 40
- >>> cost
- 5.0
- See Also
- --------
- graph_edit_distance, optimize_edit_paths
- References
- ----------
- .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick
- Martineau. An Exact Graph Edit Distance Algorithm for Solving
- Pattern Recognition Problems. 4th International Conference on
- Pattern Recognition Applications and Methods 2015, Jan 2015,
- Lisbon, Portugal. 2015,
- <10.5220/0005209202710278>. <hal-01168816>
- https://hal.archives-ouvertes.fr/hal-01168816
- """
- paths = []
- bestcost = None
- for vertex_path, edge_path, cost in optimize_edit_paths(
- G1,
- G2,
- node_match,
- edge_match,
- node_subst_cost,
- node_del_cost,
- node_ins_cost,
- edge_subst_cost,
- edge_del_cost,
- edge_ins_cost,
- upper_bound,
- False,
- ):
- # assert bestcost is None or cost <= bestcost
- if bestcost is not None and cost < bestcost:
- paths = []
- paths.append((vertex_path, edge_path))
- bestcost = cost
- return paths, bestcost
- def optimize_graph_edit_distance(
- G1,
- G2,
- node_match=None,
- edge_match=None,
- node_subst_cost=None,
- node_del_cost=None,
- node_ins_cost=None,
- edge_subst_cost=None,
- edge_del_cost=None,
- edge_ins_cost=None,
- upper_bound=None,
- ):
- """Returns consecutive approximations of GED (graph edit distance)
- between graphs G1 and G2.
- Graph edit distance is a graph similarity measure analogous to
- Levenshtein distance for strings. It is defined as minimum cost
- of edit path (sequence of node and edge edit operations)
- transforming graph G1 to graph isomorphic to G2.
- Parameters
- ----------
- G1, G2: graphs
- The two graphs G1 and G2 must be of the same type.
- node_match : callable
- A function that returns True if node n1 in G1 and n2 in G2
- should be considered equal during matching.
- The function will be called like
- node_match(G1.nodes[n1], G2.nodes[n2]).
- That is, the function will receive the node attribute
- dictionaries for n1 and n2 as inputs.
- Ignored if node_subst_cost is specified. If neither
- node_match nor node_subst_cost are specified then node
- attributes are not considered.
- edge_match : callable
- A function that returns True if the edge attribute dictionaries
- for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
- be considered equal during matching.
- The function will be called like
- edge_match(G1[u1][v1], G2[u2][v2]).
- That is, the function will receive the edge attribute
- dictionaries of the edges under consideration.
- Ignored if edge_subst_cost is specified. If neither
- edge_match nor edge_subst_cost are specified then edge
- attributes are not considered.
- node_subst_cost, node_del_cost, node_ins_cost : callable
- Functions that return the costs of node substitution, node
- deletion, and node insertion, respectively.
- The functions will be called like
- node_subst_cost(G1.nodes[n1], G2.nodes[n2]),
- node_del_cost(G1.nodes[n1]),
- node_ins_cost(G2.nodes[n2]).
- That is, the functions will receive the node attribute
- dictionaries as inputs. The functions are expected to return
- positive numeric values.
- Function node_subst_cost overrides node_match if specified.
- If neither node_match nor node_subst_cost are specified then
- default node substitution cost of 0 is used (node attributes
- are not considered during matching).
- If node_del_cost is not specified then default node deletion
- cost of 1 is used. If node_ins_cost is not specified then
- default node insertion cost of 1 is used.
- edge_subst_cost, edge_del_cost, edge_ins_cost : callable
- Functions that return the costs of edge substitution, edge
- deletion, and edge insertion, respectively.
- The functions will be called like
- edge_subst_cost(G1[u1][v1], G2[u2][v2]),
- edge_del_cost(G1[u1][v1]),
- edge_ins_cost(G2[u2][v2]).
- That is, the functions will receive the edge attribute
- dictionaries as inputs. The functions are expected to return
- positive numeric values.
- Function edge_subst_cost overrides edge_match if specified.
- If neither edge_match nor edge_subst_cost are specified then
- default edge substitution cost of 0 is used (edge attributes
- are not considered during matching).
- If edge_del_cost is not specified then default edge deletion
- cost of 1 is used. If edge_ins_cost is not specified then
- default edge insertion cost of 1 is used.
- upper_bound : numeric
- Maximum edit distance to consider.
- Returns
- -------
- Generator of consecutive approximations of graph edit distance.
- Examples
- --------
- >>> G1 = nx.cycle_graph(6)
- >>> G2 = nx.wheel_graph(7)
- >>> for v in nx.optimize_graph_edit_distance(G1, G2):
- ... minv = v
- >>> minv
- 7.0
- See Also
- --------
- graph_edit_distance, optimize_edit_paths
- References
- ----------
- .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick
- Martineau. An Exact Graph Edit Distance Algorithm for Solving
- Pattern Recognition Problems. 4th International Conference on
- Pattern Recognition Applications and Methods 2015, Jan 2015,
- Lisbon, Portugal. 2015,
- <10.5220/0005209202710278>. <hal-01168816>
- https://hal.archives-ouvertes.fr/hal-01168816
- """
- for _, _, cost in optimize_edit_paths(
- G1,
- G2,
- node_match,
- edge_match,
- node_subst_cost,
- node_del_cost,
- node_ins_cost,
- edge_subst_cost,
- edge_del_cost,
- edge_ins_cost,
- upper_bound,
- True,
- ):
- yield cost
- def optimize_edit_paths(
- G1,
- G2,
- node_match=None,
- edge_match=None,
- node_subst_cost=None,
- node_del_cost=None,
- node_ins_cost=None,
- edge_subst_cost=None,
- edge_del_cost=None,
- edge_ins_cost=None,
- upper_bound=None,
- strictly_decreasing=True,
- roots=None,
- timeout=None,
- ):
- """GED (graph edit distance) calculation: advanced interface.
- Graph edit path is a sequence of node and edge edit operations
- transforming graph G1 to graph isomorphic to G2. Edit operations
- include substitutions, deletions, and insertions.
- Graph edit distance is defined as minimum cost of edit path.
- Parameters
- ----------
- G1, G2: graphs
- The two graphs G1 and G2 must be of the same type.
- node_match : callable
- A function that returns True if node n1 in G1 and n2 in G2
- should be considered equal during matching.
- The function will be called like
- node_match(G1.nodes[n1], G2.nodes[n2]).
- That is, the function will receive the node attribute
- dictionaries for n1 and n2 as inputs.
- Ignored if node_subst_cost is specified. If neither
- node_match nor node_subst_cost are specified then node
- attributes are not considered.
- edge_match : callable
- A function that returns True if the edge attribute dictionaries
- for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
- be considered equal during matching.
- The function will be called like
- edge_match(G1[u1][v1], G2[u2][v2]).
- That is, the function will receive the edge attribute
- dictionaries of the edges under consideration.
- Ignored if edge_subst_cost is specified. If neither
- edge_match nor edge_subst_cost are specified then edge
- attributes are not considered.
- node_subst_cost, node_del_cost, node_ins_cost : callable
- Functions that return the costs of node substitution, node
- deletion, and node insertion, respectively.
- The functions will be called like
- node_subst_cost(G1.nodes[n1], G2.nodes[n2]),
- node_del_cost(G1.nodes[n1]),
- node_ins_cost(G2.nodes[n2]).
- That is, the functions will receive the node attribute
- dictionaries as inputs. The functions are expected to return
- positive numeric values.
- Function node_subst_cost overrides node_match if specified.
- If neither node_match nor node_subst_cost are specified then
- default node substitution cost of 0 is used (node attributes
- are not considered during matching).
- If node_del_cost is not specified then default node deletion
- cost of 1 is used. If node_ins_cost is not specified then
- default node insertion cost of 1 is used.
- edge_subst_cost, edge_del_cost, edge_ins_cost : callable
- Functions that return the costs of edge substitution, edge
- deletion, and edge insertion, respectively.
- The functions will be called like
- edge_subst_cost(G1[u1][v1], G2[u2][v2]),
- edge_del_cost(G1[u1][v1]),
- edge_ins_cost(G2[u2][v2]).
- That is, the functions will receive the edge attribute
- dictionaries as inputs. The functions are expected to return
- positive numeric values.
- Function edge_subst_cost overrides edge_match if specified.
- If neither edge_match nor edge_subst_cost are specified then
- default edge substitution cost of 0 is used (edge attributes
- are not considered during matching).
- If edge_del_cost is not specified then default edge deletion
- cost of 1 is used. If edge_ins_cost is not specified then
- default edge insertion cost of 1 is used.
- upper_bound : numeric
- Maximum edit distance to consider.
- strictly_decreasing : bool
- If True, return consecutive approximations of strictly
- decreasing cost. Otherwise, return all edit paths of cost
- less than or equal to the previous minimum cost.
- roots : 2-tuple
- Tuple where first element is a node in G1 and the second
- is a node in G2.
- These nodes are forced to be matched in the comparison to
- allow comparison between rooted graphs.
- timeout : numeric
- Maximum number of seconds to execute.
- After timeout is met, the current best GED is returned.
- Returns
- -------
- Generator of tuples (node_edit_path, edge_edit_path, cost)
- node_edit_path : list of tuples (u, v)
- edge_edit_path : list of tuples ((u1, v1), (u2, v2))
- cost : numeric
- See Also
- --------
- graph_edit_distance, optimize_graph_edit_distance, optimal_edit_paths
- References
- ----------
- .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick
- Martineau. An Exact Graph Edit Distance Algorithm for Solving
- Pattern Recognition Problems. 4th International Conference on
- Pattern Recognition Applications and Methods 2015, Jan 2015,
- Lisbon, Portugal. 2015,
- <10.5220/0005209202710278>. <hal-01168816>
- https://hal.archives-ouvertes.fr/hal-01168816
- """
- # TODO: support DiGraph
- import numpy as np
- import scipy as sp
- import scipy.optimize # call as sp.optimize
- @dataclass
- class CostMatrix:
- C: ...
- lsa_row_ind: ...
- lsa_col_ind: ...
- ls: ...
- def make_CostMatrix(C, m, n):
- # assert(C.shape == (m + n, m + n))
- lsa_row_ind, lsa_col_ind = sp.optimize.linear_sum_assignment(C)
- # Fixup dummy assignments:
- # each substitution i<->j should have dummy assignment m+j<->n+i
- # NOTE: fast reduce of Cv relies on it
- # assert len(lsa_row_ind) == len(lsa_col_ind)
- indexes = zip(range(len(lsa_row_ind)), lsa_row_ind, lsa_col_ind)
- subst_ind = [k for k, i, j in indexes if i < m and j < n]
- indexes = zip(range(len(lsa_row_ind)), lsa_row_ind, lsa_col_ind)
- dummy_ind = [k for k, i, j in indexes if i >= m and j >= n]
- # assert len(subst_ind) == len(dummy_ind)
- lsa_row_ind[dummy_ind] = lsa_col_ind[subst_ind] + m
- lsa_col_ind[dummy_ind] = lsa_row_ind[subst_ind] + n
- return CostMatrix(
- C, lsa_row_ind, lsa_col_ind, C[lsa_row_ind, lsa_col_ind].sum()
- )
- def extract_C(C, i, j, m, n):
- # assert(C.shape == (m + n, m + n))
- row_ind = [k in i or k - m in j for k in range(m + n)]
- col_ind = [k in j or k - n in i for k in range(m + n)]
- return C[row_ind, :][:, col_ind]
- def reduce_C(C, i, j, m, n):
- # assert(C.shape == (m + n, m + n))
- row_ind = [k not in i and k - m not in j for k in range(m + n)]
- col_ind = [k not in j and k - n not in i for k in range(m + n)]
- return C[row_ind, :][:, col_ind]
- def reduce_ind(ind, i):
- # assert set(ind) == set(range(len(ind)))
- rind = ind[[k not in i for k in ind]]
- for k in set(i):
- rind[rind >= k] -= 1
- return rind
- def match_edges(u, v, pending_g, pending_h, Ce, matched_uv=None):
- """
- Parameters:
- u, v: matched vertices, u=None or v=None for
- deletion/insertion
- pending_g, pending_h: lists of edges not yet mapped
- Ce: CostMatrix of pending edge mappings
- matched_uv: partial vertex edit path
- list of tuples (u, v) of previously matched vertex
- mappings u<->v, u=None or v=None for
- deletion/insertion
- Returns:
- list of (i, j): indices of edge mappings g<->h
- localCe: local CostMatrix of edge mappings
- (basically submatrix of Ce at cross of rows i, cols j)
- """
- M = len(pending_g)
- N = len(pending_h)
- # assert Ce.C.shape == (M + N, M + N)
- # only attempt to match edges after one node match has been made
- # this will stop self-edges on the first node being automatically deleted
- # even when a substitution is the better option
- if matched_uv is None or len(matched_uv) == 0:
- g_ind = []
- h_ind = []
- else:
- g_ind = [
- i
- for i in range(M)
- if pending_g[i][:2] == (u, u)
- or any(
- pending_g[i][:2] in ((p, u), (u, p), (p, p)) for p, q in matched_uv
- )
- ]
- h_ind = [
- j
- for j in range(N)
- if pending_h[j][:2] == (v, v)
- or any(
- pending_h[j][:2] in ((q, v), (v, q), (q, q)) for p, q in matched_uv
- )
- ]
- m = len(g_ind)
- n = len(h_ind)
- if m or n:
- C = extract_C(Ce.C, g_ind, h_ind, M, N)
- # assert C.shape == (m + n, m + n)
- # Forbid structurally invalid matches
- # NOTE: inf remembered from Ce construction
- for k, i in enumerate(g_ind):
- g = pending_g[i][:2]
- for l, j in enumerate(h_ind):
- h = pending_h[j][:2]
- if nx.is_directed(G1) or nx.is_directed(G2):
- if any(
- g == (p, u) and h == (q, v) or g == (u, p) and h == (v, q)
- for p, q in matched_uv
- ):
- continue
- else:
- if any(
- g in ((p, u), (u, p)) and h in ((q, v), (v, q))
- for p, q in matched_uv
- ):
- continue
- if g == (u, u) or any(g == (p, p) for p, q in matched_uv):
- continue
- if h == (v, v) or any(h == (q, q) for p, q in matched_uv):
- continue
- C[k, l] = inf
- localCe = make_CostMatrix(C, m, n)
- ij = [
- (
- g_ind[k] if k < m else M + h_ind[l],
- h_ind[l] if l < n else N + g_ind[k],
- )
- for k, l in zip(localCe.lsa_row_ind, localCe.lsa_col_ind)
- if k < m or l < n
- ]
- else:
- ij = []
- localCe = CostMatrix(np.empty((0, 0)), [], [], 0)
- return ij, localCe
- def reduce_Ce(Ce, ij, m, n):
- if len(ij):
- i, j = zip(*ij)
- m_i = m - sum(1 for t in i if t < m)
- n_j = n - sum(1 for t in j if t < n)
- return make_CostMatrix(reduce_C(Ce.C, i, j, m, n), m_i, n_j)
- return Ce
- def get_edit_ops(
- matched_uv, pending_u, pending_v, Cv, pending_g, pending_h, Ce, matched_cost
- ):
- """
- Parameters:
- matched_uv: partial vertex edit path
- list of tuples (u, v) of vertex mappings u<->v,
- u=None or v=None for deletion/insertion
- pending_u, pending_v: lists of vertices not yet mapped
- Cv: CostMatrix of pending vertex mappings
- pending_g, pending_h: lists of edges not yet mapped
- Ce: CostMatrix of pending edge mappings
- matched_cost: cost of partial edit path
- Returns:
- sequence of
- (i, j): indices of vertex mapping u<->v
- Cv_ij: reduced CostMatrix of pending vertex mappings
- (basically Cv with row i, col j removed)
- list of (x, y): indices of edge mappings g<->h
- Ce_xy: reduced CostMatrix of pending edge mappings
- (basically Ce with rows x, cols y removed)
- cost: total cost of edit operation
- NOTE: most promising ops first
- """
- m = len(pending_u)
- n = len(pending_v)
- # assert Cv.C.shape == (m + n, m + n)
- # 1) a vertex mapping from optimal linear sum assignment
- i, j = min(
- (k, l) for k, l in zip(Cv.lsa_row_ind, Cv.lsa_col_ind) if k < m or l < n
- )
- xy, localCe = match_edges(
- pending_u[i] if i < m else None,
- pending_v[j] if j < n else None,
- pending_g,
- pending_h,
- Ce,
- matched_uv,
- )
- Ce_xy = reduce_Ce(Ce, xy, len(pending_g), len(pending_h))
- # assert Ce.ls <= localCe.ls + Ce_xy.ls
- if prune(matched_cost + Cv.ls + localCe.ls + Ce_xy.ls):
- pass
- else:
- # get reduced Cv efficiently
- Cv_ij = CostMatrix(
- reduce_C(Cv.C, (i,), (j,), m, n),
- reduce_ind(Cv.lsa_row_ind, (i, m + j)),
- reduce_ind(Cv.lsa_col_ind, (j, n + i)),
- Cv.ls - Cv.C[i, j],
- )
- yield (i, j), Cv_ij, xy, Ce_xy, Cv.C[i, j] + localCe.ls
- # 2) other candidates, sorted by lower-bound cost estimate
- other = []
- fixed_i, fixed_j = i, j
- if m <= n:
- candidates = (
- (t, fixed_j)
- for t in range(m + n)
- if t != fixed_i and (t < m or t == m + fixed_j)
- )
- else:
- candidates = (
- (fixed_i, t)
- for t in range(m + n)
- if t != fixed_j and (t < n or t == n + fixed_i)
- )
- for i, j in candidates:
- if prune(matched_cost + Cv.C[i, j] + Ce.ls):
- continue
- Cv_ij = make_CostMatrix(
- reduce_C(Cv.C, (i,), (j,), m, n),
- m - 1 if i < m else m,
- n - 1 if j < n else n,
- )
- # assert Cv.ls <= Cv.C[i, j] + Cv_ij.ls
- if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + Ce.ls):
- continue
- xy, localCe = match_edges(
- pending_u[i] if i < m else None,
- pending_v[j] if j < n else None,
- pending_g,
- pending_h,
- Ce,
- matched_uv,
- )
- if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + localCe.ls):
- continue
- Ce_xy = reduce_Ce(Ce, xy, len(pending_g), len(pending_h))
- # assert Ce.ls <= localCe.ls + Ce_xy.ls
- if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + localCe.ls + Ce_xy.ls):
- continue
- other.append(((i, j), Cv_ij, xy, Ce_xy, Cv.C[i, j] + localCe.ls))
- yield from sorted(other, key=lambda t: t[4] + t[1].ls + t[3].ls)
- def get_edit_paths(
- matched_uv,
- pending_u,
- pending_v,
- Cv,
- matched_gh,
- pending_g,
- pending_h,
- Ce,
- matched_cost,
- ):
- """
- Parameters:
- matched_uv: partial vertex edit path
- list of tuples (u, v) of vertex mappings u<->v,
- u=None or v=None for deletion/insertion
- pending_u, pending_v: lists of vertices not yet mapped
- Cv: CostMatrix of pending vertex mappings
- matched_gh: partial edge edit path
- list of tuples (g, h) of edge mappings g<->h,
- g=None or h=None for deletion/insertion
- pending_g, pending_h: lists of edges not yet mapped
- Ce: CostMatrix of pending edge mappings
- matched_cost: cost of partial edit path
- Returns:
- sequence of (vertex_path, edge_path, cost)
- vertex_path: complete vertex edit path
- list of tuples (u, v) of vertex mappings u<->v,
- u=None or v=None for deletion/insertion
- edge_path: complete edge edit path
- list of tuples (g, h) of edge mappings g<->h,
- g=None or h=None for deletion/insertion
- cost: total cost of edit path
- NOTE: path costs are non-increasing
- """
- # debug_print('matched-uv:', matched_uv)
- # debug_print('matched-gh:', matched_gh)
- # debug_print('matched-cost:', matched_cost)
- # debug_print('pending-u:', pending_u)
- # debug_print('pending-v:', pending_v)
- # debug_print(Cv.C)
- # assert list(sorted(G1.nodes)) == list(sorted(list(u for u, v in matched_uv if u is not None) + pending_u))
- # assert list(sorted(G2.nodes)) == list(sorted(list(v for u, v in matched_uv if v is not None) + pending_v))
- # debug_print('pending-g:', pending_g)
- # debug_print('pending-h:', pending_h)
- # debug_print(Ce.C)
- # assert list(sorted(G1.edges)) == list(sorted(list(g for g, h in matched_gh if g is not None) + pending_g))
- # assert list(sorted(G2.edges)) == list(sorted(list(h for g, h in matched_gh if h is not None) + pending_h))
- # debug_print()
- if prune(matched_cost + Cv.ls + Ce.ls):
- return
- if not max(len(pending_u), len(pending_v)):
- # assert not len(pending_g)
- # assert not len(pending_h)
- # path completed!
- # assert matched_cost <= maxcost_value
- nonlocal maxcost_value
- maxcost_value = min(maxcost_value, matched_cost)
- yield matched_uv, matched_gh, matched_cost
- else:
- edit_ops = get_edit_ops(
- matched_uv,
- pending_u,
- pending_v,
- Cv,
- pending_g,
- pending_h,
- Ce,
- matched_cost,
- )
- for ij, Cv_ij, xy, Ce_xy, edit_cost in edit_ops:
- i, j = ij
- # assert Cv.C[i, j] + sum(Ce.C[t] for t in xy) == edit_cost
- if prune(matched_cost + edit_cost + Cv_ij.ls + Ce_xy.ls):
- continue
- # dive deeper
- u = pending_u.pop(i) if i < len(pending_u) else None
- v = pending_v.pop(j) if j < len(pending_v) else None
- matched_uv.append((u, v))
- for x, y in xy:
- len_g = len(pending_g)
- len_h = len(pending_h)
- matched_gh.append(
- (
- pending_g[x] if x < len_g else None,
- pending_h[y] if y < len_h else None,
- )
- )
- sortedx = sorted(x for x, y in xy)
- sortedy = sorted(y for x, y in xy)
- G = [
- (pending_g.pop(x) if x < len(pending_g) else None)
- for x in reversed(sortedx)
- ]
- H = [
- (pending_h.pop(y) if y < len(pending_h) else None)
- for y in reversed(sortedy)
- ]
- yield from get_edit_paths(
- matched_uv,
- pending_u,
- pending_v,
- Cv_ij,
- matched_gh,
- pending_g,
- pending_h,
- Ce_xy,
- matched_cost + edit_cost,
- )
- # backtrack
- if u is not None:
- pending_u.insert(i, u)
- if v is not None:
- pending_v.insert(j, v)
- matched_uv.pop()
- for x, g in zip(sortedx, reversed(G)):
- if g is not None:
- pending_g.insert(x, g)
- for y, h in zip(sortedy, reversed(H)):
- if h is not None:
- pending_h.insert(y, h)
- for _ in xy:
- matched_gh.pop()
- # Initialization
- pending_u = list(G1.nodes)
- pending_v = list(G2.nodes)
- initial_cost = 0
- if roots:
- root_u, root_v = roots
- if root_u not in pending_u or root_v not in pending_v:
- raise nx.NodeNotFound("Root node not in graph.")
- # remove roots from pending
- pending_u.remove(root_u)
- pending_v.remove(root_v)
- # cost matrix of vertex mappings
- m = len(pending_u)
- n = len(pending_v)
- C = np.zeros((m + n, m + n))
- if node_subst_cost:
- C[0:m, 0:n] = np.array(
- [
- node_subst_cost(G1.nodes[u], G2.nodes[v])
- for u in pending_u
- for v in pending_v
- ]
- ).reshape(m, n)
- if roots:
- initial_cost = node_subst_cost(G1.nodes[root_u], G2.nodes[root_v])
- elif node_match:
- C[0:m, 0:n] = np.array(
- [
- 1 - int(node_match(G1.nodes[u], G2.nodes[v]))
- for u in pending_u
- for v in pending_v
- ]
- ).reshape(m, n)
- if roots:
- initial_cost = 1 - node_match(G1.nodes[root_u], G2.nodes[root_v])
- else:
- # all zeroes
- pass
- # assert not min(m, n) or C[0:m, 0:n].min() >= 0
- if node_del_cost:
- del_costs = [node_del_cost(G1.nodes[u]) for u in pending_u]
- else:
- del_costs = [1] * len(pending_u)
- # assert not m or min(del_costs) >= 0
- if node_ins_cost:
- ins_costs = [node_ins_cost(G2.nodes[v]) for v in pending_v]
- else:
- ins_costs = [1] * len(pending_v)
- # assert not n or min(ins_costs) >= 0
- inf = C[0:m, 0:n].sum() + sum(del_costs) + sum(ins_costs) + 1
- C[0:m, n : n + m] = np.array(
- [del_costs[i] if i == j else inf for i in range(m) for j in range(m)]
- ).reshape(m, m)
- C[m : m + n, 0:n] = np.array(
- [ins_costs[i] if i == j else inf for i in range(n) for j in range(n)]
- ).reshape(n, n)
- Cv = make_CostMatrix(C, m, n)
- # debug_print(f"Cv: {m} x {n}")
- # debug_print(Cv.C)
- pending_g = list(G1.edges)
- pending_h = list(G2.edges)
- # cost matrix of edge mappings
- m = len(pending_g)
- n = len(pending_h)
- C = np.zeros((m + n, m + n))
- if edge_subst_cost:
- C[0:m, 0:n] = np.array(
- [
- edge_subst_cost(G1.edges[g], G2.edges[h])
- for g in pending_g
- for h in pending_h
- ]
- ).reshape(m, n)
- elif edge_match:
- C[0:m, 0:n] = np.array(
- [
- 1 - int(edge_match(G1.edges[g], G2.edges[h]))
- for g in pending_g
- for h in pending_h
- ]
- ).reshape(m, n)
- else:
- # all zeroes
- pass
- # assert not min(m, n) or C[0:m, 0:n].min() >= 0
- if edge_del_cost:
- del_costs = [edge_del_cost(G1.edges[g]) for g in pending_g]
- else:
- del_costs = [1] * len(pending_g)
- # assert not m or min(del_costs) >= 0
- if edge_ins_cost:
- ins_costs = [edge_ins_cost(G2.edges[h]) for h in pending_h]
- else:
- ins_costs = [1] * len(pending_h)
- # assert not n or min(ins_costs) >= 0
- inf = C[0:m, 0:n].sum() + sum(del_costs) + sum(ins_costs) + 1
- C[0:m, n : n + m] = np.array(
- [del_costs[i] if i == j else inf for i in range(m) for j in range(m)]
- ).reshape(m, m)
- C[m : m + n, 0:n] = np.array(
- [ins_costs[i] if i == j else inf for i in range(n) for j in range(n)]
- ).reshape(n, n)
- Ce = make_CostMatrix(C, m, n)
- # debug_print(f'Ce: {m} x {n}')
- # debug_print(Ce.C)
- # debug_print()
- maxcost_value = Cv.C.sum() + Ce.C.sum() + 1
- if timeout is not None:
- if timeout <= 0:
- raise nx.NetworkXError("Timeout value must be greater than 0")
- start = time.perf_counter()
- def prune(cost):
- if timeout is not None:
- if time.perf_counter() - start > timeout:
- return True
- if upper_bound is not None:
- if cost > upper_bound:
- return True
- if cost > maxcost_value:
- return True
- if strictly_decreasing and cost >= maxcost_value:
- return True
- return False
- # Now go!
- done_uv = [] if roots is None else [roots]
- for vertex_path, edge_path, cost in get_edit_paths(
- done_uv, pending_u, pending_v, Cv, [], pending_g, pending_h, Ce, initial_cost
- ):
- # assert sorted(G1.nodes) == sorted(u for u, v in vertex_path if u is not None)
- # assert sorted(G2.nodes) == sorted(v for u, v in vertex_path if v is not None)
- # assert sorted(G1.edges) == sorted(g for g, h in edge_path if g is not None)
- # assert sorted(G2.edges) == sorted(h for g, h in edge_path if h is not None)
- # print(vertex_path, edge_path, cost, file = sys.stderr)
- # assert cost == maxcost_value
- yield list(vertex_path), list(edge_path), cost
- def simrank_similarity(
- G,
- source=None,
- target=None,
- importance_factor=0.9,
- max_iterations=1000,
- tolerance=1e-4,
- ):
- """Returns the SimRank similarity of nodes in the graph ``G``.
- SimRank is a similarity metric that says "two objects are considered
- to be similar if they are referenced by similar objects." [1]_.
- The pseudo-code definition from the paper is::
- def simrank(G, u, v):
- in_neighbors_u = G.predecessors(u)
- in_neighbors_v = G.predecessors(v)
- scale = C / (len(in_neighbors_u) * len(in_neighbors_v))
- return scale * sum(simrank(G, w, x)
- for w, x in product(in_neighbors_u,
- in_neighbors_v))
- where ``G`` is the graph, ``u`` is the source, ``v`` is the target,
- and ``C`` is a float decay or importance factor between 0 and 1.
- The SimRank algorithm for determining node similarity is defined in
- [2]_.
- Parameters
- ----------
- G : NetworkX graph
- A NetworkX graph
- source : node
- If this is specified, the returned dictionary maps each node
- ``v`` in the graph to the similarity between ``source`` and
- ``v``.
- target : node
- If both ``source`` and ``target`` are specified, the similarity
- value between ``source`` and ``target`` is returned. If
- ``target`` is specified but ``source`` is not, this argument is
- ignored.
- importance_factor : float
- The relative importance of indirect neighbors with respect to
- direct neighbors.
- max_iterations : integer
- Maximum number of iterations.
- tolerance : float
- Error tolerance used to check convergence. When an iteration of
- the algorithm finds that no similarity value changes more than
- this amount, the algorithm halts.
- Returns
- -------
- similarity : dictionary or float
- If ``source`` and ``target`` are both ``None``, this returns a
- dictionary of dictionaries, where keys are node pairs and value
- are similarity of the pair of nodes.
- If ``source`` is not ``None`` but ``target`` is, this returns a
- dictionary mapping node to the similarity of ``source`` and that
- node.
- If neither ``source`` nor ``target`` is ``None``, this returns
- the similarity value for the given pair of nodes.
- Examples
- --------
- >>> G = nx.cycle_graph(2)
- >>> nx.simrank_similarity(G)
- {0: {0: 1.0, 1: 0.0}, 1: {0: 0.0, 1: 1.0}}
- >>> nx.simrank_similarity(G, source=0)
- {0: 1.0, 1: 0.0}
- >>> nx.simrank_similarity(G, source=0, target=0)
- 1.0
- The result of this function can be converted to a numpy array
- representing the SimRank matrix by using the node order of the
- graph to determine which row and column represent each node.
- Other ordering of nodes is also possible.
- >>> import numpy as np
- >>> sim = nx.simrank_similarity(G)
- >>> np.array([[sim[u][v] for v in G] for u in G])
- array([[1., 0.],
- [0., 1.]])
- >>> sim_1d = nx.simrank_similarity(G, source=0)
- >>> np.array([sim[0][v] for v in G])
- array([1., 0.])
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/SimRank
- .. [2] G. Jeh and J. Widom.
- "SimRank: a measure of structural-context similarity",
- In KDD'02: Proceedings of the Eighth ACM SIGKDD
- International Conference on Knowledge Discovery and Data Mining,
- pp. 538--543. ACM Press, 2002.
- """
- import numpy as np
- nodelist = list(G)
- s_indx = None if source is None else nodelist.index(source)
- t_indx = None if target is None else nodelist.index(target)
- x = _simrank_similarity_numpy(
- G, s_indx, t_indx, importance_factor, max_iterations, tolerance
- )
- if isinstance(x, np.ndarray):
- if x.ndim == 1:
- return dict(zip(G, x))
- # else x.ndim == 2
- return {u: dict(zip(G, row)) for u, row in zip(G, x)}
- return x
- def _simrank_similarity_python(
- G,
- source=None,
- target=None,
- importance_factor=0.9,
- max_iterations=1000,
- tolerance=1e-4,
- ):
- """Returns the SimRank similarity of nodes in the graph ``G``.
- This pure Python version is provided for pedagogical purposes.
- Examples
- --------
- >>> G = nx.cycle_graph(2)
- >>> nx.similarity._simrank_similarity_python(G)
- {0: {0: 1, 1: 0.0}, 1: {0: 0.0, 1: 1}}
- >>> nx.similarity._simrank_similarity_python(G, source=0)
- {0: 1, 1: 0.0}
- >>> nx.similarity._simrank_similarity_python(G, source=0, target=0)
- 1
- """
- # build up our similarity adjacency dictionary output
- newsim = {u: {v: 1 if u == v else 0 for v in G} for u in G}
- # These functions compute the update to the similarity value of the nodes
- # `u` and `v` with respect to the previous similarity values.
- def avg_sim(s):
- return sum(newsim[w][x] for (w, x) in s) / len(s) if s else 0.0
- Gadj = G.pred if G.is_directed() else G.adj
- def sim(u, v):
- return importance_factor * avg_sim(list(product(Gadj[u], Gadj[v])))
- for its in range(max_iterations):
- oldsim = newsim
- newsim = {u: {v: sim(u, v) if u is not v else 1 for v in G} for u in G}
- is_close = all(
- all(
- abs(newsim[u][v] - old) <= tolerance * (1 + abs(old))
- for v, old in nbrs.items()
- )
- for u, nbrs in oldsim.items()
- )
- if is_close:
- break
- if its + 1 == max_iterations:
- raise nx.ExceededMaxIterations(
- f"simrank did not converge after {max_iterations} iterations."
- )
- if source is not None and target is not None:
- return newsim[source][target]
- if source is not None:
- return newsim[source]
- return newsim
- def _simrank_similarity_numpy(
- G,
- source=None,
- target=None,
- importance_factor=0.9,
- max_iterations=1000,
- tolerance=1e-4,
- ):
- """Calculate SimRank of nodes in ``G`` using matrices with ``numpy``.
- The SimRank algorithm for determining node similarity is defined in
- [1]_.
- Parameters
- ----------
- G : NetworkX graph
- A NetworkX graph
- source : node
- If this is specified, the returned dictionary maps each node
- ``v`` in the graph to the similarity between ``source`` and
- ``v``.
- target : node
- If both ``source`` and ``target`` are specified, the similarity
- value between ``source`` and ``target`` is returned. If
- ``target`` is specified but ``source`` is not, this argument is
- ignored.
- importance_factor : float
- The relative importance of indirect neighbors with respect to
- direct neighbors.
- max_iterations : integer
- Maximum number of iterations.
- tolerance : float
- Error tolerance used to check convergence. When an iteration of
- the algorithm finds that no similarity value changes more than
- this amount, the algorithm halts.
- Returns
- -------
- similarity : numpy array or float
- If ``source`` and ``target`` are both ``None``, this returns a
- 2D array containing SimRank scores of the nodes.
- If ``source`` is not ``None`` but ``target`` is, this returns an
- 1D array containing SimRank scores of ``source`` and that
- node.
- If neither ``source`` nor ``target`` is ``None``, this returns
- the similarity value for the given pair of nodes.
- Examples
- --------
- >>> G = nx.cycle_graph(2)
- >>> nx.similarity._simrank_similarity_numpy(G)
- array([[1., 0.],
- [0., 1.]])
- >>> nx.similarity._simrank_similarity_numpy(G, source=0)
- array([1., 0.])
- >>> nx.similarity._simrank_similarity_numpy(G, source=0, target=0)
- 1.0
- References
- ----------
- .. [1] G. Jeh and J. Widom.
- "SimRank: a measure of structural-context similarity",
- In KDD'02: Proceedings of the Eighth ACM SIGKDD
- International Conference on Knowledge Discovery and Data Mining,
- pp. 538--543. ACM Press, 2002.
- """
- # This algorithm follows roughly
- #
- # S = max{C * (A.T * S * A), I}
- #
- # where C is the importance factor, A is the column normalized
- # adjacency matrix, and I is the identity matrix.
- import numpy as np
- adjacency_matrix = nx.to_numpy_array(G)
- # column-normalize the ``adjacency_matrix``
- s = np.array(adjacency_matrix.sum(axis=0))
- s[s == 0] = 1
- adjacency_matrix /= s # adjacency_matrix.sum(axis=0)
- newsim = np.eye(len(G), dtype=np.float64)
- for its in range(max_iterations):
- prevsim = newsim.copy()
- newsim = importance_factor * ((adjacency_matrix.T @ prevsim) @ adjacency_matrix)
- np.fill_diagonal(newsim, 1.0)
- if np.allclose(prevsim, newsim, atol=tolerance):
- break
- if its + 1 == max_iterations:
- raise nx.ExceededMaxIterations(
- f"simrank did not converge after {max_iterations} iterations."
- )
- if source is not None and target is not None:
- return newsim[source, target]
- if source is not None:
- return newsim[source]
- return newsim
- def panther_similarity(G, source, k=5, path_length=5, c=0.5, delta=0.1, eps=None):
- r"""Returns the Panther similarity of nodes in the graph `G` to node ``v``.
- Panther is a similarity metric that says "two objects are considered
- to be similar if they frequently appear on the same paths." [1]_.
- Parameters
- ----------
- G : NetworkX graph
- A NetworkX graph
- source : node
- Source node for which to find the top `k` similar other nodes
- k : int (default = 5)
- The number of most similar nodes to return
- path_length : int (default = 5)
- How long the randomly generated paths should be (``T`` in [1]_)
- c : float (default = 0.5)
- A universal positive constant used to scale the number
- of sample random paths to generate.
- delta : float (default = 0.1)
- The probability that the similarity $S$ is not an epsilon-approximation to (R, phi),
- where $R$ is the number of random paths and $\phi$ is the probability
- that an element sampled from a set $A \subseteq D$, where $D$ is the domain.
- eps : float or None (default = None)
- The error bound. Per [1]_, a good value is ``sqrt(1/|E|)``. Therefore,
- if no value is provided, the recommended computed value will be used.
- Returns
- -------
- similarity : dictionary
- Dictionary of nodes to similarity scores (as floats). Note:
- the self-similarity (i.e., ``v``) will not be included in
- the returned dictionary.
- Examples
- --------
- >>> G = nx.star_graph(10)
- >>> sim = nx.panther_similarity(G, 0)
- References
- ----------
- .. [1] Zhang, J., Tang, J., Ma, C., Tong, H., Jing, Y., & Li, J.
- Panther: Fast top-k similarity search on large networks.
- In Proceedings of the ACM SIGKDD International Conference
- on Knowledge Discovery and Data Mining (Vol. 2015-August, pp. 1445–1454).
- Association for Computing Machinery. https://doi.org/10.1145/2783258.2783267.
- """
- import numpy as np
- num_nodes = G.number_of_nodes()
- if num_nodes < k:
- warnings.warn(
- f"Number of nodes is {num_nodes}, but requested k is {k}. "
- "Setting k to number of nodes."
- )
- k = num_nodes
- # According to [1], they empirically determined
- # a good value for ``eps`` to be sqrt( 1 / |E| )
- if eps is None:
- eps = np.sqrt(1.0 / G.number_of_edges())
- inv_node_map = {name: index for index, name in enumerate(G.nodes)}
- node_map = np.array(G)
- # Calculate the sample size ``R`` for how many paths
- # to randomly generate
- t_choose_2 = math.comb(path_length, 2)
- sample_size = int((c / eps**2) * (np.log2(t_choose_2) + 1 + np.log(1 / delta)))
- index_map = {}
- _ = list(
- generate_random_paths(
- G, sample_size, path_length=path_length, index_map=index_map
- )
- )
- S = np.zeros(num_nodes)
- inv_sample_size = 1 / sample_size
- source_paths = set(index_map[source])
- # Calculate the path similarities
- # between ``source`` (v) and ``node`` (v_j)
- # using our inverted index mapping of
- # vertices to paths
- for node, paths in index_map.items():
- # Only consider paths where both
- # ``node`` and ``source`` are present
- common_paths = source_paths.intersection(paths)
- S[inv_node_map[node]] = len(common_paths) * inv_sample_size
- # Retrieve top ``k`` similar
- # Note: the below performed anywhere from 4-10x faster
- # (depending on input sizes) vs the equivalent ``np.argsort(S)[::-1]``
- top_k_unsorted = np.argpartition(S, -k)[-k:]
- top_k_sorted = top_k_unsorted[np.argsort(S[top_k_unsorted])][::-1]
- # Add back the similarity scores
- top_k_sorted_names = (node_map[n] for n in top_k_sorted)
- top_k_with_val = dict(zip(top_k_sorted_names, S[top_k_sorted]))
- # Remove the self-similarity
- top_k_with_val.pop(source, None)
- return top_k_with_val
- def generate_random_paths(G, sample_size, path_length=5, index_map=None):
- """Randomly generate `sample_size` paths of length `path_length`.
- Parameters
- ----------
- G : NetworkX graph
- A NetworkX graph
- sample_size : integer
- The number of paths to generate. This is ``R`` in [1]_.
- path_length : integer (default = 5)
- The maximum size of the path to randomly generate.
- This is ``T`` in [1]_. According to the paper, ``T >= 5`` is
- recommended.
- index_map : dictionary, optional
- If provided, this will be populated with the inverted
- index of nodes mapped to the set of generated random path
- indices within ``paths``.
- Returns
- -------
- paths : generator of lists
- Generator of `sample_size` paths each with length `path_length`.
- Examples
- --------
- Note that the return value is the list of paths:
- >>> G = nx.star_graph(3)
- >>> random_path = nx.generate_random_paths(G, 2)
- By passing a dictionary into `index_map`, it will build an
- inverted index mapping of nodes to the paths in which that node is present:
- >>> G = nx.star_graph(3)
- >>> index_map = {}
- >>> random_path = nx.generate_random_paths(G, 3, index_map=index_map)
- >>> paths_containing_node_0 = [random_path[path_idx] for path_idx in index_map.get(0, [])]
- References
- ----------
- .. [1] Zhang, J., Tang, J., Ma, C., Tong, H., Jing, Y., & Li, J.
- Panther: Fast top-k similarity search on large networks.
- In Proceedings of the ACM SIGKDD International Conference
- on Knowledge Discovery and Data Mining (Vol. 2015-August, pp. 1445–1454).
- Association for Computing Machinery. https://doi.org/10.1145/2783258.2783267.
- """
- import numpy as np
- # Calculate transition probabilities between
- # every pair of vertices according to Eq. (3)
- adj_mat = nx.to_numpy_array(G)
- inv_row_sums = np.reciprocal(adj_mat.sum(axis=1)).reshape(-1, 1)
- transition_probabilities = adj_mat * inv_row_sums
- node_map = np.array(G)
- num_nodes = G.number_of_nodes()
- for path_index in range(sample_size):
- # Sample current vertex v = v_i uniformly at random
- node_index = np.random.randint(0, high=num_nodes)
- node = node_map[node_index]
- # Add v into p_r and add p_r into the path set
- # of v, i.e., P_v
- path = [node]
- # Build the inverted index (P_v) of vertices to paths
- if index_map is not None:
- if node in index_map:
- index_map[node].add(path_index)
- else:
- index_map[node] = {path_index}
- starting_index = node_index
- for _ in range(path_length):
- # Randomly sample a neighbor (v_j) according
- # to transition probabilities from ``node`` (v) to its neighbors
- neighbor_index = np.random.choice(
- num_nodes, p=transition_probabilities[starting_index]
- )
- # Set current vertex (v = v_j)
- starting_index = neighbor_index
- # Add v into p_r
- neighbor_node = node_map[neighbor_index]
- path.append(neighbor_node)
- # Add p_r into P_v
- if index_map is not None:
- if neighbor_node in index_map:
- index_map[neighbor_node].add(path_index)
- else:
- index_map[neighbor_node] = {path_index}
- yield path
|