1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- r""" Computation of graph non-randomness
- """
- import math
- import networkx as nx
- from networkx.utils import not_implemented_for
- __all__ = ["non_randomness"]
- @not_implemented_for("directed")
- @not_implemented_for("multigraph")
- def non_randomness(G, k=None, weight="weight"):
- """Compute the non-randomness of graph G.
- The first returned value nr is the sum of non-randomness values of all
- edges within the graph (where the non-randomness of an edge tends to be
- small when the two nodes linked by that edge are from two different
- communities).
- The second computed value nr_rd is a relative measure that indicates
- to what extent graph G is different from random graphs in terms
- of probability. When it is close to 0, the graph tends to be more
- likely generated by an Erdos Renyi model.
- Parameters
- ----------
- G : NetworkX graph
- Graph must be symmetric, connected, and without self-loops.
- k : int
- The number of communities in G.
- If k is not set, the function will use a default community
- detection algorithm to set it.
- weight : string or None, optional (default=None)
- The name of an edge attribute that holds the numerical value used
- as a weight. If None, then each edge has weight 1, i.e., the graph is
- binary.
- Returns
- -------
- non-randomness : (float, float) tuple
- Non-randomness, Relative non-randomness w.r.t.
- Erdos Renyi random graphs.
- Raises
- ------
- NetworkXException
- if the input graph is not connected.
- NetworkXError
- if the input graph contains self-loops.
- Examples
- --------
- >>> G = nx.karate_club_graph()
- >>> nr, nr_rd = nx.non_randomness(G, 2)
- >>> nr, nr_rd = nx.non_randomness(G, 2, 'weight')
- Notes
- -----
- This computes Eq. (4.4) and (4.5) in Ref. [1]_.
- If a weight field is passed, this algorithm will use the eigenvalues
- of the weighted adjacency matrix to compute Eq. (4.4) and (4.5).
- References
- ----------
- .. [1] Xiaowei Ying and Xintao Wu,
- On Randomness Measures for Social Networks,
- SIAM International Conference on Data Mining. 2009
- """
- import numpy as np
- if not nx.is_connected(G):
- raise nx.NetworkXException("Non connected graph.")
- if len(list(nx.selfloop_edges(G))) > 0:
- raise nx.NetworkXError("Graph must not contain self-loops")
- if k is None:
- k = len(tuple(nx.community.label_propagation_communities(G)))
-
- eigenvalues = np.linalg.eigvals(nx.to_numpy_array(G, weight=weight))
- nr = np.real(np.sum(eigenvalues[:k]))
- n = G.number_of_nodes()
- m = G.number_of_edges()
- p = (2 * k * m) / (n * (n - k))
-
- nr_rd = (nr - ((n - 2 * k) * p + k)) / math.sqrt(2 * k * p * (1 - p))
- return nr, nr_rd
|