123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231 |
- """
- =======================
- Distance-regular graphs
- =======================
- """
- import networkx as nx
- from networkx.utils import not_implemented_for
- from .distance_measures import diameter
- __all__ = [
- "is_distance_regular",
- "is_strongly_regular",
- "intersection_array",
- "global_parameters",
- ]
- def is_distance_regular(G):
- """Returns True if the graph is distance regular, False otherwise.
- A connected graph G is distance-regular if for any nodes x,y
- and any integers i,j=0,1,...,d (where d is the graph
- diameter), the number of vertices at distance i from x and
- distance j from y depends only on i,j and the graph distance
- between x and y, independently of the choice of x and y.
- Parameters
- ----------
- G: Networkx graph (undirected)
- Returns
- -------
- bool
- True if the graph is Distance Regular, False otherwise
- Examples
- --------
- >>> G = nx.hypercube_graph(6)
- >>> nx.is_distance_regular(G)
- True
- See Also
- --------
- intersection_array, global_parameters
- Notes
- -----
- For undirected and simple graphs only
- References
- ----------
- .. [1] Brouwer, A. E.; Cohen, A. M.; and Neumaier, A.
- Distance-Regular Graphs. New York: Springer-Verlag, 1989.
- .. [2] Weisstein, Eric W. "Distance-Regular Graph."
- http://mathworld.wolfram.com/Distance-RegularGraph.html
- """
- try:
- intersection_array(G)
- return True
- except nx.NetworkXError:
- return False
- def global_parameters(b, c):
- """Returns global parameters for a given intersection array.
- Given a distance-regular graph G with integers b_i, c_i,i = 0,....,d
- such that for any 2 vertices x,y in G at a distance i=d(x,y), there
- are exactly c_i neighbors of y at a distance of i-1 from x and b_i
- neighbors of y at a distance of i+1 from x.
- Thus, a distance regular graph has the global parameters,
- [[c_0,a_0,b_0],[c_1,a_1,b_1],......,[c_d,a_d,b_d]] for the
- intersection array [b_0,b_1,.....b_{d-1};c_1,c_2,.....c_d]
- where a_i+b_i+c_i=k , k= degree of every vertex.
- Parameters
- ----------
- b : list
- c : list
- Returns
- -------
- iterable
- An iterable over three tuples.
- Examples
- --------
- >>> G = nx.dodecahedral_graph()
- >>> b, c = nx.intersection_array(G)
- >>> list(nx.global_parameters(b, c))
- [(0, 0, 3), (1, 0, 2), (1, 1, 1), (1, 1, 1), (2, 0, 1), (3, 0, 0)]
- References
- ----------
- .. [1] Weisstein, Eric W. "Global Parameters."
- From MathWorld--A Wolfram Web Resource.
- http://mathworld.wolfram.com/GlobalParameters.html
- See Also
- --------
- intersection_array
- """
- return ((y, b[0] - x - y, x) for x, y in zip(b + [0], [0] + c))
- @not_implemented_for("directed", "multigraph")
- def intersection_array(G):
- """Returns the intersection array of a distance-regular graph.
- Given a distance-regular graph G with integers b_i, c_i,i = 0,....,d
- such that for any 2 vertices x,y in G at a distance i=d(x,y), there
- are exactly c_i neighbors of y at a distance of i-1 from x and b_i
- neighbors of y at a distance of i+1 from x.
- A distance regular graph's intersection array is given by,
- [b_0,b_1,.....b_{d-1};c_1,c_2,.....c_d]
- Parameters
- ----------
- G: Networkx graph (undirected)
- Returns
- -------
- b,c: tuple of lists
- Examples
- --------
- >>> G = nx.icosahedral_graph()
- >>> nx.intersection_array(G)
- ([5, 2, 1], [1, 2, 5])
- References
- ----------
- .. [1] Weisstein, Eric W. "Intersection Array."
- From MathWorld--A Wolfram Web Resource.
- http://mathworld.wolfram.com/IntersectionArray.html
- See Also
- --------
- global_parameters
- """
- # test for regular graph (all degrees must be equal)
- degree = iter(G.degree())
- (_, k) = next(degree)
- for _, knext in degree:
- if knext != k:
- raise nx.NetworkXError("Graph is not distance regular.")
- k = knext
- path_length = dict(nx.all_pairs_shortest_path_length(G))
- diameter = max(max(path_length[n].values()) for n in path_length)
- bint = {} # 'b' intersection array
- cint = {} # 'c' intersection array
- for u in G:
- for v in G:
- try:
- i = path_length[u][v]
- except KeyError as err: # graph must be connected
- raise nx.NetworkXError("Graph is not distance regular.") from err
- # number of neighbors of v at a distance of i-1 from u
- c = len([n for n in G[v] if path_length[n][u] == i - 1])
- # number of neighbors of v at a distance of i+1 from u
- b = len([n for n in G[v] if path_length[n][u] == i + 1])
- # b,c are independent of u and v
- if cint.get(i, c) != c or bint.get(i, b) != b:
- raise nx.NetworkXError("Graph is not distance regular")
- bint[i] = b
- cint[i] = c
- return (
- [bint.get(j, 0) for j in range(diameter)],
- [cint.get(j + 1, 0) for j in range(diameter)],
- )
- # TODO There is a definition for directed strongly regular graphs.
- @not_implemented_for("directed", "multigraph")
- def is_strongly_regular(G):
- """Returns True if and only if the given graph is strongly
- regular.
- An undirected graph is *strongly regular* if
- * it is regular,
- * each pair of adjacent vertices has the same number of neighbors in
- common,
- * each pair of nonadjacent vertices has the same number of neighbors
- in common.
- Each strongly regular graph is a distance-regular graph.
- Conversely, if a distance-regular graph has diameter two, then it is
- a strongly regular graph. For more information on distance-regular
- graphs, see :func:`is_distance_regular`.
- Parameters
- ----------
- G : NetworkX graph
- An undirected graph.
- Returns
- -------
- bool
- Whether `G` is strongly regular.
- Examples
- --------
- The cycle graph on five vertices is strongly regular. It is
- two-regular, each pair of adjacent vertices has no shared neighbors,
- and each pair of nonadjacent vertices has one shared neighbor::
- >>> G = nx.cycle_graph(5)
- >>> nx.is_strongly_regular(G)
- True
- """
- # Here is an alternate implementation based directly on the
- # definition of strongly regular graphs:
- #
- # return (all_equal(G.degree().values())
- # and all_equal(len(common_neighbors(G, u, v))
- # for u, v in G.edges())
- # and all_equal(len(common_neighbors(G, u, v))
- # for u, v in non_edges(G)))
- #
- # We instead use the fact that a distance-regular graph of diameter
- # two is strongly regular.
- return is_distance_regular(G) and diameter(G) == 2
|