123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149 |
- """Degree centrality measures."""
- import networkx as nx
- from networkx.utils.decorators import not_implemented_for
- __all__ = ["degree_centrality", "in_degree_centrality", "out_degree_centrality"]
- @nx._dispatch
- def degree_centrality(G):
- """Compute the degree centrality for nodes.
- The degree centrality for a node v is the fraction of nodes it
- is connected to.
- Parameters
- ----------
- G : graph
- A networkx graph
- Returns
- -------
- nodes : dictionary
- Dictionary of nodes with degree centrality as the value.
- Examples
- --------
- >>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
- >>> nx.degree_centrality(G)
- {0: 1.0, 1: 1.0, 2: 0.6666666666666666, 3: 0.6666666666666666}
- See Also
- --------
- betweenness_centrality, load_centrality, eigenvector_centrality
- Notes
- -----
- The degree centrality values are normalized by dividing by the maximum
- possible degree in a simple graph n-1 where n is the number of nodes in G.
- For multigraphs or graphs with self loops the maximum degree might
- be higher than n-1 and values of degree centrality greater than 1
- are possible.
- """
- if len(G) <= 1:
- return {n: 1 for n in G}
- s = 1.0 / (len(G) - 1.0)
- centrality = {n: d * s for n, d in G.degree()}
- return centrality
- @nx._dispatch
- @not_implemented_for("undirected")
- def in_degree_centrality(G):
- """Compute the in-degree centrality for nodes.
- The in-degree centrality for a node v is the fraction of nodes its
- incoming edges are connected to.
- Parameters
- ----------
- G : graph
- A NetworkX graph
- Returns
- -------
- nodes : dictionary
- Dictionary of nodes with in-degree centrality as values.
- Raises
- ------
- NetworkXNotImplemented
- If G is undirected.
- Examples
- --------
- >>> G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
- >>> nx.in_degree_centrality(G)
- {0: 0.0, 1: 0.3333333333333333, 2: 0.6666666666666666, 3: 0.6666666666666666}
- See Also
- --------
- degree_centrality, out_degree_centrality
- Notes
- -----
- The degree centrality values are normalized by dividing by the maximum
- possible degree in a simple graph n-1 where n is the number of nodes in G.
- For multigraphs or graphs with self loops the maximum degree might
- be higher than n-1 and values of degree centrality greater than 1
- are possible.
- """
- if len(G) <= 1:
- return {n: 1 for n in G}
- s = 1.0 / (len(G) - 1.0)
- centrality = {n: d * s for n, d in G.in_degree()}
- return centrality
- @nx._dispatch
- @not_implemented_for("undirected")
- def out_degree_centrality(G):
- """Compute the out-degree centrality for nodes.
- The out-degree centrality for a node v is the fraction of nodes its
- outgoing edges are connected to.
- Parameters
- ----------
- G : graph
- A NetworkX graph
- Returns
- -------
- nodes : dictionary
- Dictionary of nodes with out-degree centrality as values.
- Raises
- ------
- NetworkXNotImplemented
- If G is undirected.
- Examples
- --------
- >>> G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
- >>> nx.out_degree_centrality(G)
- {0: 1.0, 1: 0.6666666666666666, 2: 0.0, 3: 0.0}
- See Also
- --------
- degree_centrality, in_degree_centrality
- Notes
- -----
- The degree centrality values are normalized by dividing by the maximum
- possible degree in a simple graph n-1 where n is the number of nodes in G.
- For multigraphs or graphs with self loops the maximum degree might
- be higher than n-1 and values of degree centrality greater than 1
- are possible.
- """
- if len(G) <= 1:
- return {n: 1 for n in G}
- s = 1.0 / (len(G) - 1.0)
- centrality = {n: d * s for n, d in G.out_degree()}
- return centrality
|