123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384 |
- import pytest
- import networkx as nx
- from networkx.algorithms import bipartite
- from networkx.algorithms.bipartite.cluster import cc_dot, cc_max, cc_min
- def test_pairwise_bipartite_cc_functions():
- # Test functions for different kinds of bipartite clustering coefficients
- # between pairs of nodes using 3 example graphs from figure 5 p. 40
- # Latapy et al (2008)
- G1 = nx.Graph([(0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 5), (1, 6), (1, 7)])
- G2 = nx.Graph([(0, 2), (0, 3), (0, 4), (1, 3), (1, 4), (1, 5)])
- G3 = nx.Graph(
- [(0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9)]
- )
- result = {
- 0: [1 / 3.0, 2 / 3.0, 2 / 5.0],
- 1: [1 / 2.0, 2 / 3.0, 2 / 3.0],
- 2: [2 / 8.0, 2 / 5.0, 2 / 5.0],
- }
- for i, G in enumerate([G1, G2, G3]):
- assert bipartite.is_bipartite(G)
- assert cc_dot(set(G[0]), set(G[1])) == result[i][0]
- assert cc_min(set(G[0]), set(G[1])) == result[i][1]
- assert cc_max(set(G[0]), set(G[1])) == result[i][2]
- def test_star_graph():
- G = nx.star_graph(3)
- # all modes are the same
- answer = {0: 0, 1: 1, 2: 1, 3: 1}
- assert bipartite.clustering(G, mode="dot") == answer
- assert bipartite.clustering(G, mode="min") == answer
- assert bipartite.clustering(G, mode="max") == answer
- def test_not_bipartite():
- with pytest.raises(nx.NetworkXError):
- bipartite.clustering(nx.complete_graph(4))
- def test_bad_mode():
- with pytest.raises(nx.NetworkXError):
- bipartite.clustering(nx.path_graph(4), mode="foo")
- def test_path_graph():
- G = nx.path_graph(4)
- answer = {0: 0.5, 1: 0.5, 2: 0.5, 3: 0.5}
- assert bipartite.clustering(G, mode="dot") == answer
- assert bipartite.clustering(G, mode="max") == answer
- answer = {0: 1, 1: 1, 2: 1, 3: 1}
- assert bipartite.clustering(G, mode="min") == answer
- def test_average_path_graph():
- G = nx.path_graph(4)
- assert bipartite.average_clustering(G, mode="dot") == 0.5
- assert bipartite.average_clustering(G, mode="max") == 0.5
- assert bipartite.average_clustering(G, mode="min") == 1
- def test_ra_clustering_davis():
- G = nx.davis_southern_women_graph()
- cc4 = round(bipartite.robins_alexander_clustering(G), 3)
- assert cc4 == 0.468
- def test_ra_clustering_square():
- G = nx.path_graph(4)
- G.add_edge(0, 3)
- assert bipartite.robins_alexander_clustering(G) == 1.0
- def test_ra_clustering_zero():
- G = nx.Graph()
- assert bipartite.robins_alexander_clustering(G) == 0
- G.add_nodes_from(range(4))
- assert bipartite.robins_alexander_clustering(G) == 0
- G.add_edges_from([(0, 1), (2, 3), (3, 4)])
- assert bipartite.robins_alexander_clustering(G) == 0
- G.add_edge(1, 2)
- assert bipartite.robins_alexander_clustering(G) == 0
|