123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 |
- import networkx as nx
- __all__ = ["degree_centrality", "betweenness_centrality", "closeness_centrality"]
- def degree_centrality(G, nodes):
- r"""Compute the degree centrality for nodes in a bipartite network.
- The degree centrality for a node `v` is the fraction of nodes
- connected to it.
- Parameters
- ----------
- G : graph
- A bipartite network
- nodes : list or container
- Container with all nodes in one bipartite node set.
- Returns
- -------
- centrality : dictionary
- Dictionary keyed by node with bipartite degree centrality as the value.
- See Also
- --------
- betweenness_centrality
- closeness_centrality
- :func:`~networkx.algorithms.bipartite.basic.sets`
- :func:`~networkx.algorithms.bipartite.basic.is_bipartite`
- Notes
- -----
- The nodes input parameter must contain all nodes in one bipartite node set,
- but the dictionary returned contains all nodes from both bipartite node
- sets. See :mod:`bipartite documentation <networkx.algorithms.bipartite>`
- for further details on how bipartite graphs are handled in NetworkX.
- For unipartite networks, the degree centrality values are
- normalized by dividing by the maximum possible degree (which is
- `n-1` where `n` is the number of nodes in G).
- In the bipartite case, the maximum possible degree of a node in a
- bipartite node set is the number of nodes in the opposite node set
- [1]_. The degree centrality for a node `v` in the bipartite
- sets `U` with `n` nodes and `V` with `m` nodes is
- .. math::
- d_{v} = \frac{deg(v)}{m}, \mbox{for} v \in U ,
- d_{v} = \frac{deg(v)}{n}, \mbox{for} v \in V ,
- where `deg(v)` is the degree of node `v`.
- References
- ----------
- .. [1] Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation
- Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook
- of Social Network Analysis. Sage Publications.
- https://dx.doi.org/10.4135/9781446294413.n28
- """
- top = set(nodes)
- bottom = set(G) - top
- s = 1.0 / len(bottom)
- centrality = {n: d * s for n, d in G.degree(top)}
- s = 1.0 / len(top)
- centrality.update({n: d * s for n, d in G.degree(bottom)})
- return centrality
- def betweenness_centrality(G, nodes):
- r"""Compute betweenness centrality for nodes in a bipartite network.
- Betweenness centrality of a node `v` is the sum of the
- fraction of all-pairs shortest paths that pass through `v`.
- Values of betweenness are normalized by the maximum possible
- value which for bipartite graphs is limited by the relative size
- of the two node sets [1]_.
- Let `n` be the number of nodes in the node set `U` and
- `m` be the number of nodes in the node set `V`, then
- nodes in `U` are normalized by dividing by
- .. math::
- \frac{1}{2} [m^2 (s + 1)^2 + m (s + 1)(2t - s - 1) - t (2s - t + 3)] ,
- where
- .. math::
- s = (n - 1) \div m , t = (n - 1) \mod m ,
- and nodes in `V` are normalized by dividing by
- .. math::
- \frac{1}{2} [n^2 (p + 1)^2 + n (p + 1)(2r - p - 1) - r (2p - r + 3)] ,
- where,
- .. math::
- p = (m - 1) \div n , r = (m - 1) \mod n .
- Parameters
- ----------
- G : graph
- A bipartite graph
- nodes : list or container
- Container with all nodes in one bipartite node set.
- Returns
- -------
- betweenness : dictionary
- Dictionary keyed by node with bipartite betweenness centrality
- as the value.
- See Also
- --------
- degree_centrality
- closeness_centrality
- :func:`~networkx.algorithms.bipartite.basic.sets`
- :func:`~networkx.algorithms.bipartite.basic.is_bipartite`
- Notes
- -----
- The nodes input parameter must contain all nodes in one bipartite node set,
- but the dictionary returned contains all nodes from both node sets.
- See :mod:`bipartite documentation <networkx.algorithms.bipartite>`
- for further details on how bipartite graphs are handled in NetworkX.
- References
- ----------
- .. [1] Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation
- Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook
- of Social Network Analysis. Sage Publications.
- https://dx.doi.org/10.4135/9781446294413.n28
- """
- top = set(nodes)
- bottom = set(G) - top
- n = len(top)
- m = len(bottom)
- s, t = divmod(n - 1, m)
- bet_max_top = (
- ((m**2) * ((s + 1) ** 2))
- + (m * (s + 1) * (2 * t - s - 1))
- - (t * ((2 * s) - t + 3))
- ) / 2.0
- p, r = divmod(m - 1, n)
- bet_max_bot = (
- ((n**2) * ((p + 1) ** 2))
- + (n * (p + 1) * (2 * r - p - 1))
- - (r * ((2 * p) - r + 3))
- ) / 2.0
- betweenness = nx.betweenness_centrality(G, normalized=False, weight=None)
- for node in top:
- betweenness[node] /= bet_max_top
- for node in bottom:
- betweenness[node] /= bet_max_bot
- return betweenness
- def closeness_centrality(G, nodes, normalized=True):
- r"""Compute the closeness centrality for nodes in a bipartite network.
- The closeness of a node is the distance to all other nodes in the
- graph or in the case that the graph is not connected to all other nodes
- in the connected component containing that node.
- Parameters
- ----------
- G : graph
- A bipartite network
- nodes : list or container
- Container with all nodes in one bipartite node set.
- normalized : bool, optional
- If True (default) normalize by connected component size.
- Returns
- -------
- closeness : dictionary
- Dictionary keyed by node with bipartite closeness centrality
- as the value.
- See Also
- --------
- betweenness_centrality
- degree_centrality
- :func:`~networkx.algorithms.bipartite.basic.sets`
- :func:`~networkx.algorithms.bipartite.basic.is_bipartite`
- Notes
- -----
- The nodes input parameter must contain all nodes in one bipartite node set,
- but the dictionary returned contains all nodes from both node sets.
- See :mod:`bipartite documentation <networkx.algorithms.bipartite>`
- for further details on how bipartite graphs are handled in NetworkX.
- Closeness centrality is normalized by the minimum distance possible.
- In the bipartite case the minimum distance for a node in one bipartite
- node set is 1 from all nodes in the other node set and 2 from all
- other nodes in its own set [1]_. Thus the closeness centrality
- for node `v` in the two bipartite sets `U` with
- `n` nodes and `V` with `m` nodes is
- .. math::
- c_{v} = \frac{m + 2(n - 1)}{d}, \mbox{for} v \in U,
- c_{v} = \frac{n + 2(m - 1)}{d}, \mbox{for} v \in V,
- where `d` is the sum of the distances from `v` to all
- other nodes.
- Higher values of closeness indicate higher centrality.
- As in the unipartite case, setting normalized=True causes the
- values to normalized further to n-1 / size(G)-1 where n is the
- number of nodes in the connected part of graph containing the
- node. If the graph is not completely connected, this algorithm
- computes the closeness centrality for each connected part
- separately.
- References
- ----------
- .. [1] Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation
- Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook
- of Social Network Analysis. Sage Publications.
- https://dx.doi.org/10.4135/9781446294413.n28
- """
- closeness = {}
- path_length = nx.single_source_shortest_path_length
- top = set(nodes)
- bottom = set(G) - top
- n = len(top)
- m = len(bottom)
- for node in top:
- sp = dict(path_length(G, node))
- totsp = sum(sp.values())
- if totsp > 0.0 and len(G) > 1:
- closeness[node] = (m + 2 * (n - 1)) / totsp
- if normalized:
- s = (len(sp) - 1) / (len(G) - 1)
- closeness[node] *= s
- else:
- closeness[node] = 0.0
- for node in bottom:
- sp = dict(path_length(G, node))
- totsp = sum(sp.values())
- if totsp > 0.0 and len(G) > 1:
- closeness[node] = (n + 2 * (m - 1)) / totsp
- if normalized:
- s = (len(sp) - 1) / (len(G) - 1)
- closeness[node] *= s
- else:
- closeness[node] = 0.0
- return closeness
|