12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- import random
- import networkx as nx
- from networkx.algorithms.approximation import maxcut
- def _is_valid_cut(G, set1, set2):
- union = set1.union(set2)
- assert union == set(G.nodes)
- assert len(set1) + len(set2) == G.number_of_nodes()
- def _cut_is_locally_optimal(G, cut_size, set1):
- # test if cut can be locally improved
- for i, node in enumerate(set1):
- cut_size_without_node = nx.algorithms.cut_size(
- G, set1 - {node}, weight="weight"
- )
- assert cut_size_without_node <= cut_size
- def test_random_partitioning():
- G = nx.complete_graph(5)
- _, (set1, set2) = maxcut.randomized_partitioning(G, seed=5)
- _is_valid_cut(G, set1, set2)
- def test_random_partitioning_all_to_one():
- G = nx.complete_graph(5)
- _, (set1, set2) = maxcut.randomized_partitioning(G, p=1)
- _is_valid_cut(G, set1, set2)
- assert len(set1) == G.number_of_nodes()
- assert len(set2) == 0
- def test_one_exchange_basic():
- G = nx.complete_graph(5)
- random.seed(5)
- for u, v, w in G.edges(data=True):
- w["weight"] = random.randrange(-100, 100, 1) / 10
- initial_cut = set(random.sample(sorted(G.nodes()), k=5))
- cut_size, (set1, set2) = maxcut.one_exchange(
- G, initial_cut, weight="weight", seed=5
- )
- _is_valid_cut(G, set1, set2)
- _cut_is_locally_optimal(G, cut_size, set1)
- def test_one_exchange_optimal():
- # Greedy one exchange should find the optimal solution for this graph (14)
- G = nx.Graph()
- G.add_edge(1, 2, weight=3)
- G.add_edge(1, 3, weight=3)
- G.add_edge(1, 4, weight=3)
- G.add_edge(1, 5, weight=3)
- G.add_edge(2, 3, weight=5)
- cut_size, (set1, set2) = maxcut.one_exchange(G, weight="weight", seed=5)
- _is_valid_cut(G, set1, set2)
- _cut_is_locally_optimal(G, cut_size, set1)
- # check global optimality
- assert cut_size == 14
- def test_negative_weights():
- G = nx.complete_graph(5)
- random.seed(5)
- for u, v, w in G.edges(data=True):
- w["weight"] = -1 * random.random()
- initial_cut = set(random.sample(sorted(G.nodes()), k=5))
- cut_size, (set1, set2) = maxcut.one_exchange(G, initial_cut, weight="weight")
- # make sure it is a valid cut
- _is_valid_cut(G, set1, set2)
- # check local optimality
- _cut_is_locally_optimal(G, cut_size, set1)
- # test that all nodes are in the same partition
- assert len(set1) == len(G.nodes) or len(set2) == len(G.nodes)
|