| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 | import pytestfrom mpmath import *def test_approximation():    mp.dps = 15    f = lambda x: cos(2-2*x)/x    p, err = chebyfit(f, [2, 4], 8, error=True)    assert err < 1e-5    for i in range(10):        x = 2 + i/5.        assert abs(polyval(p, x) - f(x)) < errdef test_limits():    mp.dps = 15    assert limit(lambda x: (x-sin(x))/x**3, 0).ae(mpf(1)/6)    assert limit(lambda n: (1+1/n)**n, inf).ae(e)def test_polyval():    assert polyval([], 3) == 0    assert polyval([0], 3) == 0    assert polyval([5], 3) == 5    # 4x^3 - 2x + 5    p = [4, 0, -2, 5]    assert polyval(p,4) == 253    assert polyval(p,4,derivative=True) == (253, 190)def test_polyroots():    p = polyroots([1,-4])    assert p[0].ae(4)    p, q = polyroots([1,2,3])    assert p.ae(-1 - sqrt(2)*j)    assert q.ae(-1 + sqrt(2)*j)    #this is not a real test, it only tests a specific case    assert polyroots([1]) == []    pytest.raises(ValueError, lambda: polyroots([0]))def test_polyroots_legendre():    n = 64    coeffs = [11975573020964041433067793888190275875, 0,        -190100434726484311252477736051902332000, 0,        1437919688271127330313741595496589239248, 0,        -6897338342113537600691931230430793911840, 0,        23556405536185284408974715545252277554280, 0,        -60969520211303089058522793175947071316960, 0,        124284021969194758465450309166353645376880, 0,        -204721258548015217049921875719981284186016, 0,        277415422258095841688223780704620656114900, 0,        -313237834141273382807123548182995095192800, 0,        297432255354328395601259515935229287637200, 0,        -239057700565161140389797367947941296605600, 0,        163356095386193445933028201431093219347160, 0,        -95158890516229191805647495979277603503200, 0,        47310254620162038075933656063247634556400, 0,        -20071017111583894941305187420771723751200, 0,        7255051932731034189479516844750603752850, 0,        -2228176940331017311443863996901733412640, 0,        579006552594977616773047095969088431600, 0,        -126584428502545713788439446082310831200, 0,        23112325428835593809686977515028663000, 0,        -3491517141958743235617737161547844000, 0,        431305058712550634988073414073557200, 0,        -42927166660756742088912492757452000, 0,        3378527005707706553294038781836500, 0,        -205277590220215081719131470288800, 0,        9330799555464321896324157740400, 0,        -304114948474392713657972548576, 0,        6695289961520387531608984680, 0,        -91048139350447232095702560, 0,        659769125727878493447120, 0,        -1905929106580294155360, 0,        916312070471295267]    with mp.workdps(3):        with pytest.raises(mp.NoConvergence):            polyroots(coeffs, maxsteps=5, cleanup=True, error=False,                      extraprec=n*10)        roots = polyroots(coeffs, maxsteps=50, cleanup=True, error=False,                    extraprec=n*10)        roots = [str(r) for r in roots]        assert roots == \            ['-0.999', '-0.996', '-0.991', '-0.983', '-0.973', '-0.961',            '-0.946', '-0.93', '-0.911', '-0.889', '-0.866', '-0.841',            '-0.813', '-0.784', '-0.753', '-0.72', '-0.685', '-0.649',            '-0.611', '-0.572', '-0.531', '-0.489', '-0.446', '-0.402',            '-0.357', '-0.311', '-0.265', '-0.217', '-0.17', '-0.121',            '-0.073', '-0.0243', '0.0243', '0.073', '0.121', '0.17', '0.217',            '0.265', '0.311', '0.357', '0.402', '0.446', '0.489', '0.531',            '0.572', '0.611', '0.649', '0.685', '0.72', '0.753', '0.784',            '0.813', '0.841', '0.866', '0.889', '0.911', '0.93', '0.946',            '0.961', '0.973', '0.983', '0.991', '0.996', '0.999']def test_polyroots_legendre_init():    extra_prec = 100    coeffs = [11975573020964041433067793888190275875, 0,        -190100434726484311252477736051902332000, 0,        1437919688271127330313741595496589239248, 0,        -6897338342113537600691931230430793911840, 0,        23556405536185284408974715545252277554280, 0,        -60969520211303089058522793175947071316960, 0,        124284021969194758465450309166353645376880, 0,        -204721258548015217049921875719981284186016, 0,        277415422258095841688223780704620656114900, 0,        -313237834141273382807123548182995095192800, 0,        297432255354328395601259515935229287637200, 0,        -239057700565161140389797367947941296605600, 0,        163356095386193445933028201431093219347160, 0,        -95158890516229191805647495979277603503200, 0,        47310254620162038075933656063247634556400, 0,        -20071017111583894941305187420771723751200, 0,        7255051932731034189479516844750603752850, 0,        -2228176940331017311443863996901733412640, 0,        579006552594977616773047095969088431600, 0,        -126584428502545713788439446082310831200, 0,        23112325428835593809686977515028663000, 0,        -3491517141958743235617737161547844000, 0,        431305058712550634988073414073557200, 0,        -42927166660756742088912492757452000, 0,        3378527005707706553294038781836500, 0,        -205277590220215081719131470288800, 0,        9330799555464321896324157740400, 0,        -304114948474392713657972548576, 0,        6695289961520387531608984680, 0,        -91048139350447232095702560, 0,        659769125727878493447120, 0,        -1905929106580294155360, 0,        916312070471295267]    roots_init =  matrix(['-0.999', '-0.996',  '-0.991', '-0.983', '-0.973',                          '-0.961', '-0.946',  '-0.93',  '-0.911', '-0.889',                          '-0.866', '-0.841',  '-0.813', '-0.784', '-0.753',                          '-0.72',  '-0.685',  '-0.649', '-0.611', '-0.572',                          '-0.531', '-0.489',  '-0.446', '-0.402', '-0.357',                          '-0.311', '-0.265',  '-0.217', '-0.17',  '-0.121',                          '-0.073', '-0.0243',  '0.0243', '0.073',  '0.121',                          '0.17',    '0.217',   '0.265', ' 0.311',  '0.357',                          '0.402',   '0.446',   '0.489',  '0.531',  '0.572',                          '0.611',   '0.649',   '0.685',  '0.72',   '0.753',                          '0.784',   '0.813',   '0.841',  '0.866',  '0.889',                          '0.911',   '0.93',    '0.946',  '0.961',  '0.973',                          '0.983',   '0.991',   '0.996',  '0.999',  '1.0'])    with mp.workdps(2*mp.dps):        roots_exact = polyroots(coeffs, maxsteps=50, cleanup=True, error=False,                                extraprec=2*extra_prec)    with pytest.raises(mp.NoConvergence):        polyroots(coeffs, maxsteps=5, cleanup=True, error=False,                  extraprec=extra_prec)    roots,err = polyroots(coeffs, maxsteps=5, cleanup=True, error=True,                          extraprec=extra_prec,roots_init=roots_init)    assert max(matrix(roots_exact)-matrix(roots).apply(abs)) < err    roots1,err1 = polyroots(coeffs, maxsteps=25, cleanup=True, error=True,                            extraprec=extra_prec,roots_init=roots_init[:60])    assert max(matrix(roots_exact)-matrix(roots1).apply(abs)) < err1def test_pade():    one = mpf(1)    mp.dps = 20    N = 10    a = [one]    k = 1    for i in range(1, N+1):        k *= i        a.append(one/k)    p, q = pade(a, N//2, N//2)    for x in arange(0, 1, 0.1):        r = polyval(p[::-1], x)/polyval(q[::-1], x)        assert(r.ae(exp(x), 1.0e-10))    mp.dps = 15def test_fourier():    mp.dps = 15    c, s = fourier(lambda x: x+1, [-1, 2], 2)    #plot([lambda x: x+1, lambda x: fourierval((c, s), [-1, 2], x)], [-1, 2])    assert c[0].ae(1.5)    assert c[1].ae(-3*sqrt(3)/(2*pi))    assert c[2].ae(3*sqrt(3)/(4*pi))    assert s[0] == 0    assert s[1].ae(3/(2*pi))    assert s[2].ae(3/(4*pi))    assert fourierval((c, s), [-1, 2], 1).ae(1.9134966715663442)def test_differint():    mp.dps = 15    assert differint(lambda t: t, 2, -0.5).ae(8*sqrt(2/pi)/3)def test_invlap():    mp.dps = 15    t = 0.01    fp = lambda p: 1/(p+1)**2    ft = lambda t: t*exp(-t)    ftt = ft(t)    assert invertlaplace(fp,t,method='talbot').ae(ftt)    assert invertlaplace(fp,t,method='stehfest').ae(ftt)    assert invertlaplace(fp,t,method='dehoog').ae(ftt)    assert invertlaplace(fp,t,method='cohen').ae(ftt)    t = 1.0    ftt = ft(t)    assert invertlaplace(fp,t,method='talbot').ae(ftt)    assert invertlaplace(fp,t,method='stehfest').ae(ftt)    assert invertlaplace(fp,t,method='dehoog').ae(ftt)    assert invertlaplace(fp,t,method='cohen').ae(ftt)    t = 0.01    fp = lambda p: log(p)/p    ft = lambda t: -euler-log(t)    ftt = ft(t)    assert invertlaplace(fp,t,method='talbot').ae(ftt)    assert invertlaplace(fp,t,method='stehfest').ae(ftt)    assert invertlaplace(fp,t,method='dehoog').ae(ftt)    assert invertlaplace(fp,t,method='cohen').ae(ftt)    t = 1.0    ftt = ft(t)    assert invertlaplace(fp,t,method='talbot').ae(ftt)    assert invertlaplace(fp,t,method='stehfest').ae(ftt)    assert invertlaplace(fp,t,method='dehoog').ae(ftt)    assert invertlaplace(fp,t,method='cohen').ae(ftt)
 |