123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- from functools import partial
- import torch
- import torch.utils._pytree as pytree
- from torch._C import DispatchKey, DispatchKeySet, ExcludeDispatchKeyGuard
- from torch._functorch.eager_transforms import _unwrap_all_tensors_from_functional, _wrap_all_tensors_to_functional, functionalize
- from torch._ops import PyOperator
- from torch._subclasses.fake_tensor import FakeTensorMode
- from torch.fx.experimental.proxy_tensor import (
- disable_proxy_modes_tracing,
- make_fx,
- ProxyTorchDispatchMode,
- track_tensor_tree,
- unwrap_proxy,
- )
- from torch.utils._python_dispatch import (
- _get_current_dispatch_mode,
- _pop_mode_temporarily,
- )
- from torch.utils._pytree import tree_flatten
- from ._cond import _has_potential_branch_input_alias, _has_potential_branch_input_mutation, UnsupportedAliasMutationException
- map = PyOperator("map")
- def trace_map(proxy_mode, func_overload, f, xs, *args):
- if not isinstance(xs, torch.Tensor):
- raise ValueError("map() must loop over a tensor")
- if len(xs.shape) == 0 or xs.shape[0] == 0:
- raise ValueError("map() cannot be traced with scalar tensors or zero dimension tensors")
- if not all(isinstance(o, torch.Tensor) for o in args):
- raise ValueError("map() operands must be a list of tensors or modules")
- with disable_proxy_modes_tracing():
- body_graph = make_fx(f)(xs[0], *args)
- next_name = None
- i = 0
- while not next_name:
- candidate = f"body_graph_{i}"
- if hasattr(proxy_mode.tracer.root, candidate):
- i += 1
- else:
- next_name = candidate
- proxy_mode.tracer.root.register_module(next_name, body_graph)
- node_args = (body_graph, xs, *args)
- proxy_args = pytree.tree_map(partial(unwrap_proxy, proxy_mode), node_args)
- out_proxy = proxy_mode.tracer.create_proxy('call_function', func_overload, proxy_args, {},
- name="map")
- outs = [body_graph(x, *args) for x in xs]
- # Implementation notes: we need to use new_empty() + copy_() here instead of stack() directly
- # because stack([...]) takes a fixed size list which will specialize dynamic shape here.
- # Meanwhile we want to preserve the looped over dimension as symbolic shape, such that:
- # ys: Tensor[s0, ...] = map(xs: Tensor[s0, ...], *args)
- out = outs[0].new_empty([xs.shape[0], *outs[0].shape])
- out.copy_(torch.stack(outs))
- return track_tensor_tree(out, out_proxy, constant=None, tracer=proxy_mode.tracer)
- @map.py_impl(DispatchKey.CUDA)
- @map.py_impl(DispatchKey.CPU)
- def map_cpu(f, xs, *args):
- mode = _get_current_dispatch_mode()
- assert (mode is None), "Mode should never be enabled for CPU/CUDA key"
- return torch.stack([f(x, *args) for x in xs])
- @map.py_impl(DispatchKey.AutogradCUDA)
- @map.py_impl(DispatchKey.AutogradCPU)
- def map_autograd(f, xs, *args):
- # TODO: support autograd
- flat_operands, _ = tree_flatten([f, xs, args])
- assert all([not f.requires_grad for f in flat_operands
- if isinstance(f, torch.Tensor)])
- _ = ExcludeDispatchKeyGuard(DispatchKeySet(DispatchKey.AutogradCPU))
- return map(f, xs, *args)
- @map.py_impl(ProxyTorchDispatchMode)
- def map_proxy_torch_dispatch_mode(f, xs, *args):
- mode = _get_current_dispatch_mode()
- assert (mode is not None), "Mode should always be enabled for python fallback key"
- with _pop_mode_temporarily() as mode:
- res = trace_map(mode, map, f, xs, *args)
- return res
- @map.py_impl(FakeTensorMode)
- def map_fake_tensor_mode(f, xs, *args):
- outs = [f(x, *args) for x in xs]
- return outs[0].new_empty([xs.shape[0], *outs[0].shape])
- # We cannot directly call fallthrough here due to issue #89037.
- @map.py_impl(DispatchKey.PythonDispatcher)
- def map_python_dispatcher(*args):
- _ = ExcludeDispatchKeyGuard(DispatchKeySet(DispatchKey.PythonDispatcher))
- return map(*args)
- @map.py_impl(torch._C._functorch.TransformType.Functionalize)
- def map_functionalize(interpreter, f, xs, *args):
- """
- Functionalization implementation for torch.map. Currently:
- 1. We don't allow any input mutation inside the map function
- 2. Our check for above condition is not exhaustive
- """
- reapply_views = interpreter.functionalize_add_back_views()
- mode = 'mutations_and_views' if reapply_views else 'mutations'
- # At this point, we will see functionalized tensors, so need to unwrap them first
- unwrapped_xs = _unwrap_all_tensors_from_functional(xs, reapply_views=reapply_views)
- unwrapped_args = _unwrap_all_tensors_from_functional(args, reapply_views=reapply_views)
- functional_map_fn = functionalize(f, remove=mode)
- with interpreter.lower():
- fake_tensor_mode = FakeTensorMode()
- with fake_tensor_mode as ft_mode:
- # Returns fake inputs for a single map function call
- def get_fake_inputs(unwrapped_xs, unwrapped_args):
- fake_xs = ft_mode.fake_tensor_converter(ft_mode, unwrapped_xs)
- fake_args = pytree.tree_map_only(
- torch.Tensor,
- lambda x: ft_mode.fake_tensor_converter(ft_mode, x),
- unwrapped_args,
- )
- return (fake_xs[0],) + fake_args
- fake_inputs = get_fake_inputs(unwrapped_xs, unwrapped_args)
- if _has_potential_branch_input_mutation(functional_map_fn, fake_inputs):
- raise UnsupportedAliasMutationException(
- "torch.map is mutating the input!"
- )
- if _has_potential_branch_input_alias(functional_map_fn, fake_inputs):
- raise UnsupportedAliasMutationException(
- "torch.map is aliasing the input!"
- )
- map_return = map(functional_map_fn, unwrapped_xs, *unwrapped_args)
- return _wrap_all_tensors_to_functional(map_return, level=interpreter.level())
- # TODO(voz) Make this automatic for keys, this is very ugly atm
- map.fallthrough(DispatchKey.PythonTLSSnapshot)
- map.fallthrough(DispatchKey.ADInplaceOrView)
- map.fallthrough(DispatchKey.BackendSelect)
|