123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- import cv2
- import cv2.typing
- import typing
- # Enumerations
- CALIB_USE_INTRINSIC_GUESS: int
- CALIB_RECOMPUTE_EXTRINSIC: int
- CALIB_CHECK_COND: int
- CALIB_FIX_SKEW: int
- CALIB_FIX_K1: int
- CALIB_FIX_K2: int
- CALIB_FIX_K3: int
- CALIB_FIX_K4: int
- CALIB_FIX_INTRINSIC: int
- CALIB_FIX_PRINCIPAL_POINT: int
- CALIB_ZERO_DISPARITY: int
- CALIB_FIX_FOCAL_LENGTH: int
- # Functions
- @typing.overload
- def calibrate(objectPoints: typing.Sequence[cv2.typing.MatLike], imagePoints: typing.Sequence[cv2.typing.MatLike], image_size: cv2.typing.Size, K: cv2.typing.MatLike, D: cv2.typing.MatLike, rvecs: typing.Sequence[cv2.typing.MatLike] | None = ..., tvecs: typing.Sequence[cv2.typing.MatLike] | None = ..., flags: int = ..., criteria: cv2.typing.TermCriteria = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike, typing.Sequence[cv2.typing.MatLike], typing.Sequence[cv2.typing.MatLike]]: ...
- @typing.overload
- def calibrate(objectPoints: typing.Sequence[cv2.UMat], imagePoints: typing.Sequence[cv2.UMat], image_size: cv2.typing.Size, K: cv2.UMat, D: cv2.UMat, rvecs: typing.Sequence[cv2.UMat] | None = ..., tvecs: typing.Sequence[cv2.UMat] | None = ..., flags: int = ..., criteria: cv2.typing.TermCriteria = ...) -> tuple[float, cv2.UMat, cv2.UMat, typing.Sequence[cv2.UMat], typing.Sequence[cv2.UMat]]: ...
- @typing.overload
- def distortPoints(undistorted: cv2.typing.MatLike, K: cv2.typing.MatLike, D: cv2.typing.MatLike, distorted: cv2.typing.MatLike | None = ..., alpha: float = ...) -> cv2.typing.MatLike: ...
- @typing.overload
- def distortPoints(undistorted: cv2.UMat, K: cv2.UMat, D: cv2.UMat, distorted: cv2.UMat | None = ..., alpha: float = ...) -> cv2.UMat: ...
- @typing.overload
- def estimateNewCameraMatrixForUndistortRectify(K: cv2.typing.MatLike, D: cv2.typing.MatLike, image_size: cv2.typing.Size, R: cv2.typing.MatLike, P: cv2.typing.MatLike | None = ..., balance: float = ..., new_size: cv2.typing.Size = ..., fov_scale: float = ...) -> cv2.typing.MatLike: ...
- @typing.overload
- def estimateNewCameraMatrixForUndistortRectify(K: cv2.UMat, D: cv2.UMat, image_size: cv2.typing.Size, R: cv2.UMat, P: cv2.UMat | None = ..., balance: float = ..., new_size: cv2.typing.Size = ..., fov_scale: float = ...) -> cv2.UMat: ...
- @typing.overload
- def initUndistortRectifyMap(K: cv2.typing.MatLike, D: cv2.typing.MatLike, R: cv2.typing.MatLike, P: cv2.typing.MatLike, size: cv2.typing.Size, m1type: int, map1: cv2.typing.MatLike | None = ..., map2: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ...
- @typing.overload
- def initUndistortRectifyMap(K: cv2.UMat, D: cv2.UMat, R: cv2.UMat, P: cv2.UMat, size: cv2.typing.Size, m1type: int, map1: cv2.UMat | None = ..., map2: cv2.UMat | None = ...) -> tuple[cv2.UMat, cv2.UMat]: ...
- @typing.overload
- def projectPoints(objectPoints: cv2.typing.MatLike, rvec: cv2.typing.MatLike, tvec: cv2.typing.MatLike, K: cv2.typing.MatLike, D: cv2.typing.MatLike, imagePoints: cv2.typing.MatLike | None = ..., alpha: float = ..., jacobian: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ...
- @typing.overload
- def projectPoints(objectPoints: cv2.UMat, rvec: cv2.UMat, tvec: cv2.UMat, K: cv2.UMat, D: cv2.UMat, imagePoints: cv2.UMat | None = ..., alpha: float = ..., jacobian: cv2.UMat | None = ...) -> tuple[cv2.UMat, cv2.UMat]: ...
- @typing.overload
- def stereoCalibrate(objectPoints: typing.Sequence[cv2.typing.MatLike], imagePoints1: typing.Sequence[cv2.typing.MatLike], imagePoints2: typing.Sequence[cv2.typing.MatLike], K1: cv2.typing.MatLike, D1: cv2.typing.MatLike, K2: cv2.typing.MatLike, D2: cv2.typing.MatLike, imageSize: cv2.typing.Size, R: cv2.typing.MatLike | None = ..., T: cv2.typing.MatLike | None = ..., rvecs: typing.Sequence[cv2.typing.MatLike] | None = ..., tvecs: typing.Sequence[cv2.typing.MatLike] | None = ..., flags: int = ..., criteria: cv2.typing.TermCriteria = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike, typing.Sequence[cv2.typing.MatLike], typing.Sequence[cv2.typing.MatLike]]: ...
- @typing.overload
- def stereoCalibrate(objectPoints: typing.Sequence[cv2.UMat], imagePoints1: typing.Sequence[cv2.UMat], imagePoints2: typing.Sequence[cv2.UMat], K1: cv2.UMat, D1: cv2.UMat, K2: cv2.UMat, D2: cv2.UMat, imageSize: cv2.typing.Size, R: cv2.UMat | None = ..., T: cv2.UMat | None = ..., rvecs: typing.Sequence[cv2.UMat] | None = ..., tvecs: typing.Sequence[cv2.UMat] | None = ..., flags: int = ..., criteria: cv2.typing.TermCriteria = ...) -> tuple[float, cv2.UMat, cv2.UMat, cv2.UMat, cv2.UMat, cv2.UMat, cv2.UMat, typing.Sequence[cv2.UMat], typing.Sequence[cv2.UMat]]: ...
- @typing.overload
- def stereoCalibrate(objectPoints: typing.Sequence[cv2.typing.MatLike], imagePoints1: typing.Sequence[cv2.typing.MatLike], imagePoints2: typing.Sequence[cv2.typing.MatLike], K1: cv2.typing.MatLike, D1: cv2.typing.MatLike, K2: cv2.typing.MatLike, D2: cv2.typing.MatLike, imageSize: cv2.typing.Size, R: cv2.typing.MatLike | None = ..., T: cv2.typing.MatLike | None = ..., flags: int = ..., criteria: cv2.typing.TermCriteria = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
- @typing.overload
- def stereoCalibrate(objectPoints: typing.Sequence[cv2.UMat], imagePoints1: typing.Sequence[cv2.UMat], imagePoints2: typing.Sequence[cv2.UMat], K1: cv2.UMat, D1: cv2.UMat, K2: cv2.UMat, D2: cv2.UMat, imageSize: cv2.typing.Size, R: cv2.UMat | None = ..., T: cv2.UMat | None = ..., flags: int = ..., criteria: cv2.typing.TermCriteria = ...) -> tuple[float, cv2.UMat, cv2.UMat, cv2.UMat, cv2.UMat, cv2.UMat, cv2.UMat]: ...
- @typing.overload
- def stereoRectify(K1: cv2.typing.MatLike, D1: cv2.typing.MatLike, K2: cv2.typing.MatLike, D2: cv2.typing.MatLike, imageSize: cv2.typing.Size, R: cv2.typing.MatLike, tvec: cv2.typing.MatLike, flags: int, R1: cv2.typing.MatLike | None = ..., R2: cv2.typing.MatLike | None = ..., P1: cv2.typing.MatLike | None = ..., P2: cv2.typing.MatLike | None = ..., Q: cv2.typing.MatLike | None = ..., newImageSize: cv2.typing.Size = ..., balance: float = ..., fov_scale: float = ...) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
- @typing.overload
- def stereoRectify(K1: cv2.UMat, D1: cv2.UMat, K2: cv2.UMat, D2: cv2.UMat, imageSize: cv2.typing.Size, R: cv2.UMat, tvec: cv2.UMat, flags: int, R1: cv2.UMat | None = ..., R2: cv2.UMat | None = ..., P1: cv2.UMat | None = ..., P2: cv2.UMat | None = ..., Q: cv2.UMat | None = ..., newImageSize: cv2.typing.Size = ..., balance: float = ..., fov_scale: float = ...) -> tuple[cv2.UMat, cv2.UMat, cv2.UMat, cv2.UMat, cv2.UMat]: ...
- @typing.overload
- def undistortImage(distorted: cv2.typing.MatLike, K: cv2.typing.MatLike, D: cv2.typing.MatLike, undistorted: cv2.typing.MatLike | None = ..., Knew: cv2.typing.MatLike | None = ..., new_size: cv2.typing.Size = ...) -> cv2.typing.MatLike: ...
- @typing.overload
- def undistortImage(distorted: cv2.UMat, K: cv2.UMat, D: cv2.UMat, undistorted: cv2.UMat | None = ..., Knew: cv2.UMat | None = ..., new_size: cv2.typing.Size = ...) -> cv2.UMat: ...
- @typing.overload
- def undistortPoints(distorted: cv2.typing.MatLike, K: cv2.typing.MatLike, D: cv2.typing.MatLike, undistorted: cv2.typing.MatLike | None = ..., R: cv2.typing.MatLike | None = ..., P: cv2.typing.MatLike | None = ..., criteria: cv2.typing.TermCriteria = ...) -> cv2.typing.MatLike: ...
- @typing.overload
- def undistortPoints(distorted: cv2.UMat, K: cv2.UMat, D: cv2.UMat, undistorted: cv2.UMat | None = ..., R: cv2.UMat | None = ..., P: cv2.UMat | None = ..., criteria: cv2.typing.TermCriteria = ...) -> cv2.UMat: ...
|