123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import torch
- from ultralytics.data import ClassificationDataset, build_dataloader
- from ultralytics.engine.validator import BaseValidator
- from ultralytics.utils import LOGGER
- from ultralytics.utils.metrics import ClassifyMetrics, ConfusionMatrix
- from ultralytics.utils.plotting import plot_images
- class ClassificationValidator(BaseValidator):
- """
- A class extending the BaseValidator class for validation based on a classification model.
- Notes:
- - Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'.
- Example:
- ```python
- from ultralytics.models.yolo.classify import ClassificationValidator
- args = dict(model='yolov8n-cls.pt', data='imagenet10')
- validator = ClassificationValidator(args=args)
- validator()
- ```
- """
- def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
- """Initializes ClassificationValidator instance with args, dataloader, save_dir, and progress bar."""
- super().__init__(dataloader, save_dir, pbar, args, _callbacks)
- self.targets = None
- self.pred = None
- self.args.task = 'classify'
- self.metrics = ClassifyMetrics()
- def get_desc(self):
- """Returns a formatted string summarizing classification metrics."""
- return ('%22s' + '%11s' * 2) % ('classes', 'top1_acc', 'top5_acc')
- def init_metrics(self, model):
- """Initialize confusion matrix, class names, and top-1 and top-5 accuracy."""
- self.names = model.names
- self.nc = len(model.names)
- self.confusion_matrix = ConfusionMatrix(nc=self.nc, task='classify')
- self.pred = []
- self.targets = []
- def preprocess(self, batch):
- """Preprocesses input batch and returns it."""
- batch['img'] = batch['img'].to(self.device, non_blocking=True)
- batch['img'] = batch['img'].half() if self.args.half else batch['img'].float()
- batch['cls'] = batch['cls'].to(self.device)
- return batch
- def update_metrics(self, preds, batch):
- """Updates running metrics with model predictions and batch targets."""
- n5 = min(len(self.model.names), 5)
- self.pred.append(preds.argsort(1, descending=True)[:, :n5])
- self.targets.append(batch['cls'])
- def finalize_metrics(self, *args, **kwargs):
- """Finalizes metrics of the model such as confusion_matrix and speed."""
- self.confusion_matrix.process_cls_preds(self.pred, self.targets)
- if self.args.plots:
- for normalize in True, False:
- self.confusion_matrix.plot(save_dir=self.save_dir,
- names=self.names.values(),
- normalize=normalize,
- on_plot=self.on_plot)
- self.metrics.speed = self.speed
- self.metrics.confusion_matrix = self.confusion_matrix
- def get_stats(self):
- """Returns a dictionary of metrics obtained by processing targets and predictions."""
- self.metrics.process(self.targets, self.pred)
- return self.metrics.results_dict
- def build_dataset(self, img_path):
- return ClassificationDataset(root=img_path, args=self.args, augment=False, prefix=self.args.split)
- def get_dataloader(self, dataset_path, batch_size):
- """Builds and returns a data loader for classification tasks with given parameters."""
- dataset = self.build_dataset(dataset_path)
- return build_dataloader(dataset, batch_size, self.args.workers, rank=-1)
- def print_results(self):
- """Prints evaluation metrics for YOLO object detection model."""
- pf = '%22s' + '%11.3g' * len(self.metrics.keys) # print format
- LOGGER.info(pf % ('all', self.metrics.top1, self.metrics.top5))
- def plot_val_samples(self, batch, ni):
- """Plot validation image samples."""
- plot_images(
- images=batch['img'],
- batch_idx=torch.arange(len(batch['img'])),
- cls=batch['cls'].view(-1), # warning: use .view(), not .squeeze() for Classify models
- fname=self.save_dir / f'val_batch{ni}_labels.jpg',
- names=self.names,
- on_plot=self.on_plot)
- def plot_predictions(self, batch, preds, ni):
- """Plots predicted bounding boxes on input images and saves the result."""
- plot_images(batch['img'],
- batch_idx=torch.arange(len(batch['img'])),
- cls=torch.argmax(preds, dim=1),
- fname=self.save_dir / f'val_batch{ni}_pred.jpg',
- names=self.names,
- on_plot=self.on_plot) # pred
|