yolov5.yaml 1.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. # YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5
  3. # Parameters
  4. nc: 80 # number of classes
  5. scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
  6. # [depth, width, max_channels]
  7. n: [0.33, 0.25, 1024]
  8. s: [0.33, 0.50, 1024]
  9. m: [0.67, 0.75, 1024]
  10. l: [1.00, 1.00, 1024]
  11. x: [1.33, 1.25, 1024]
  12. # YOLOv5 v6.0 backbone
  13. backbone:
  14. # [from, number, module, args]
  15. [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
  16. [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
  17. [-1, 3, C3, [128]],
  18. [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
  19. [-1, 6, C3, [256]],
  20. [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
  21. [-1, 9, C3, [512]],
  22. [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
  23. [-1, 3, C3, [1024]],
  24. [-1, 1, SPPF, [1024, 5]], # 9
  25. ]
  26. # YOLOv5 v6.0 head
  27. head:
  28. [[-1, 1, Conv, [512, 1, 1]],
  29. [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  30. [[-1, 6], 1, Concat, [1]], # cat backbone P4
  31. [-1, 3, C3, [512, False]], # 13
  32. [-1, 1, Conv, [256, 1, 1]],
  33. [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  34. [[-1, 4], 1, Concat, [1]], # cat backbone P3
  35. [-1, 3, C3, [256, False]], # 17 (P3/8-small)
  36. [-1, 1, Conv, [256, 3, 2]],
  37. [[-1, 14], 1, Concat, [1]], # cat head P4
  38. [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
  39. [-1, 1, Conv, [512, 3, 2]],
  40. [[-1, 10], 1, Concat, [1]], # cat head P5
  41. [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
  42. [[17, 20, 23], 1, Detect, [nc]], # Detect(P3, P4, P5)
  43. ]