12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- # YOLOv5 object detection model with P3-P6 outputs. For details see https://docs.ultralytics.com/models/yolov5
- # Parameters
- nc: 80 # number of classes
- scales: # model compound scaling constants, i.e. 'model=yolov5n-p6.yaml' will call yolov5-p6.yaml with scale 'n'
- # [depth, width, max_channels]
- n: [0.33, 0.25, 1024]
- s: [0.33, 0.50, 1024]
- m: [0.67, 0.75, 1024]
- l: [1.00, 1.00, 1024]
- x: [1.33, 1.25, 1024]
- # YOLOv5 v6.0 backbone
- backbone:
- # [from, number, module, args]
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
- [-1, 3, C3, [128]],
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
- [-1, 6, C3, [256]],
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
- [-1, 9, C3, [512]],
- [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
- [-1, 3, C3, [768]],
- [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
- [-1, 3, C3, [1024]],
- [-1, 1, SPPF, [1024, 5]], # 11
- ]
- # YOLOv5 v6.0 head
- head:
- [[-1, 1, Conv, [768, 1, 1]],
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 8], 1, Concat, [1]], # cat backbone P5
- [-1, 3, C3, [768, False]], # 15
- [-1, 1, Conv, [512, 1, 1]],
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
- [-1, 3, C3, [512, False]], # 19
- [-1, 1, Conv, [256, 1, 1]],
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
- [-1, 3, C3, [256, False]], # 23 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]],
- [[-1, 20], 1, Concat, [1]], # cat head P4
- [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]],
- [[-1, 16], 1, Concat, [1]], # cat head P5
- [-1, 3, C3, [768, False]], # 29 (P5/32-large)
- [-1, 1, Conv, [768, 3, 2]],
- [[-1, 12], 1, Concat, [1]], # cat head P6
- [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
- [[23, 26, 29, 32], 1, Detect, [nc]], # Detect(P3, P4, P5, P6)
- ]
|