coco.yaml 2.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115
  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. # COCO 2017 dataset http://cocodataset.org by Microsoft
  3. # Example usage: yolo train data=coco.yaml
  4. # parent
  5. # ├── ultralytics
  6. # └── datasets
  7. # └── coco ← downloads here (20.1 GB)
  8. # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
  9. path: ../datasets/coco # dataset root dir
  10. train: train2017.txt # train images (relative to 'path') 118287 images
  11. val: val2017.txt # val images (relative to 'path') 5000 images
  12. test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
  13. # Classes
  14. names:
  15. 0: person
  16. 1: bicycle
  17. 2: car
  18. 3: motorcycle
  19. 4: airplane
  20. 5: bus
  21. 6: train
  22. 7: truck
  23. 8: boat
  24. 9: traffic light
  25. 10: fire hydrant
  26. 11: stop sign
  27. 12: parking meter
  28. 13: bench
  29. 14: bird
  30. 15: cat
  31. 16: dog
  32. 17: horse
  33. 18: sheep
  34. 19: cow
  35. 20: elephant
  36. 21: bear
  37. 22: zebra
  38. 23: giraffe
  39. 24: backpack
  40. 25: umbrella
  41. 26: handbag
  42. 27: tie
  43. 28: suitcase
  44. 29: frisbee
  45. 30: skis
  46. 31: snowboard
  47. 32: sports ball
  48. 33: kite
  49. 34: baseball bat
  50. 35: baseball glove
  51. 36: skateboard
  52. 37: surfboard
  53. 38: tennis racket
  54. 39: bottle
  55. 40: wine glass
  56. 41: cup
  57. 42: fork
  58. 43: knife
  59. 44: spoon
  60. 45: bowl
  61. 46: banana
  62. 47: apple
  63. 48: sandwich
  64. 49: orange
  65. 50: broccoli
  66. 51: carrot
  67. 52: hot dog
  68. 53: pizza
  69. 54: donut
  70. 55: cake
  71. 56: chair
  72. 57: couch
  73. 58: potted plant
  74. 59: bed
  75. 60: dining table
  76. 61: toilet
  77. 62: tv
  78. 63: laptop
  79. 64: mouse
  80. 65: remote
  81. 66: keyboard
  82. 67: cell phone
  83. 68: microwave
  84. 69: oven
  85. 70: toaster
  86. 71: sink
  87. 72: refrigerator
  88. 73: book
  89. 74: clock
  90. 75: vase
  91. 76: scissors
  92. 77: teddy bear
  93. 78: hair drier
  94. 79: toothbrush
  95. # Download script/URL (optional)
  96. download: |
  97. from ultralytics.utils.downloads import download
  98. from pathlib import Path
  99. # Download labels
  100. segments = True # segment or box labels
  101. dir = Path(yaml['path']) # dataset root dir
  102. url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
  103. urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
  104. download(urls, dir=dir.parent)
  105. # Download data
  106. urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
  107. 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
  108. 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
  109. download(urls, dir=dir / 'images', threads=3)