coco-pose.yaml 1.5 KB

1234567891011121314151617181920212223242526272829303132333435363738
  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. # COCO 2017 dataset http://cocodataset.org by Microsoft
  3. # Example usage: yolo train data=coco-pose.yaml
  4. # parent
  5. # ├── ultralytics
  6. # └── datasets
  7. # └── coco-pose ← downloads here (20.1 GB)
  8. # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
  9. path: ../datasets/coco-pose # dataset root dir
  10. train: train2017.txt # train images (relative to 'path') 118287 images
  11. val: val2017.txt # val images (relative to 'path') 5000 images
  12. test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
  13. # Keypoints
  14. kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
  15. flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
  16. # Classes
  17. names:
  18. 0: person
  19. # Download script/URL (optional)
  20. download: |
  21. from ultralytics.utils.downloads import download
  22. from pathlib import Path
  23. # Download labels
  24. dir = Path(yaml['path']) # dataset root dir
  25. url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
  26. urls = [url + 'coco2017labels-pose.zip'] # labels
  27. download(urls, dir=dir.parent)
  28. # Download data
  29. urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
  30. 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
  31. 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
  32. download(urls, dir=dir / 'images', threads=3)