// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: alexs.mac@gmail.com (Alex Stewart) #ifndef CERES_INTERNAL_ACCELERATE_SPARSE_H_ #define CERES_INTERNAL_ACCELERATE_SPARSE_H_ // This include must come before any #ifndef check on Ceres compile options. #include "ceres/internal/config.h" #ifndef CERES_NO_ACCELERATE_SPARSE #include #include #include #include "Accelerate.h" #include "ceres/linear_solver.h" #include "ceres/sparse_cholesky.h" namespace ceres { namespace internal { class CompressedRowSparseMatrix; class TripletSparseMatrix; template struct SparseTypesTrait {}; template <> struct SparseTypesTrait { using DenseVector = DenseVector_Double; using SparseMatrix = SparseMatrix_Double; using SymbolicFactorization = SparseOpaqueSymbolicFactorization; using NumericFactorization = SparseOpaqueFactorization_Double; }; template <> struct SparseTypesTrait { using DenseVector = DenseVector_Float; using SparseMatrix = SparseMatrix_Float; using SymbolicFactorization = SparseOpaqueSymbolicFactorization; using NumericFactorization = SparseOpaqueFactorization_Float; }; template class AccelerateSparse { public: using DenseVector = typename SparseTypesTrait::DenseVector; // Use ASSparseMatrix to avoid collision with ceres::internal::SparseMatrix. using ASSparseMatrix = typename SparseTypesTrait::SparseMatrix; using SymbolicFactorization = typename SparseTypesTrait::SymbolicFactorization; using NumericFactorization = typename SparseTypesTrait::NumericFactorization; // Solves a linear system given its symbolic (reference counted within // NumericFactorization) and numeric factorization. void Solve(NumericFactorization* numeric_factor, DenseVector* rhs_and_solution); // Note: Accelerate's API passes/returns its objects by value, but as the // objects contain pointers to the underlying data these copies are // all shallow (in some cases Accelerate also reference counts the // objects internally). ASSparseMatrix CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A); // Computes a symbolic factorisation of A that can be used in Solve(). SymbolicFactorization AnalyzeCholesky(OrderingType ordering_type, ASSparseMatrix* A); // Compute the numeric Cholesky factorization of A, given its // symbolic factorization. NumericFactorization Cholesky(ASSparseMatrix* A, SymbolicFactorization* symbolic_factor); // Reuse the NumericFactorization from a previous matrix with the same // symbolic factorization to represent a new numeric factorization. void Cholesky(ASSparseMatrix* A, NumericFactorization* numeric_factor); private: std::vector column_starts_; std::vector solve_workspace_; std::vector factorization_workspace_; // Storage for the values of A if Scalar != double (necessitating a copy). Eigen::Matrix values_; }; // An implementation of SparseCholesky interface using Apple's Accelerate // framework. template class AppleAccelerateCholesky final : public SparseCholesky { public: // Factory static std::unique_ptr Create(OrderingType ordering_type); // SparseCholesky interface. virtual ~AppleAccelerateCholesky(); CompressedRowSparseMatrix::StorageType StorageType() const; LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs, std::string* message) final; LinearSolverTerminationType Solve(const double* rhs, double* solution, std::string* message) final; private: AppleAccelerateCholesky(const OrderingType ordering_type); void FreeSymbolicFactorization(); void FreeNumericFactorization(); const OrderingType ordering_type_; AccelerateSparse as_; std::unique_ptr::SymbolicFactorization> symbolic_factor_; std::unique_ptr::NumericFactorization> numeric_factor_; // Copy of rhs/solution if Scalar != double (necessitating a copy). Eigen::Matrix scalar_rhs_and_solution_; }; } // namespace internal } // namespace ceres #endif // CERES_NO_ACCELERATE_SPARSE #endif // CERES_INTERNAL_ACCELERATE_SPARSE_H_