// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: vitus@google.com (Mike Vitus) // jodebo_beck@gmx.de (Johannes Beck) #ifndef CERES_PUBLIC_INTERNAL_SPHERE_MANIFOLD_HELPERS_H_ #define CERES_PUBLIC_INTERNAL_SPHERE_MANIFOLD_HELPERS_H_ #include "ceres/constants.h" #include "ceres/internal/householder_vector.h" // This module contains functions to compute the SphereManifold plus and minus // operator and their Jacobians. // // As the parameters to these functions are shared between them, they are // described here: The following variable names are used: // Plus(x, delta) = x + delta = x_plus_delta, // Minus(y, x) = y - x = y_minus_x. // // The remaining ones are v and beta which describe the Householder // transformation of x, and norm_delta which is the norm of delta. // // The types of x, y, x_plus_delta and y_minus_x need to be equivalent to // Eigen::Matrix and the type of delta needs // to be equivalent to Eigen::Matrix. // // The type of Jacobian plus needs to be equivalent to Eigen::Matrix and for // Jacobian minus Eigen::Matrix. // // For all vector / matrix inputs and outputs, template parameters are // used in order to allow also Eigen::Ref and Eigen block expressions to // be passed to the function. namespace ceres::internal { template inline void ComputeSphereManifoldPlus(const VT& v, double beta, const XT& x, const DeltaT& delta, const double norm_delta, XPlusDeltaT* x_plus_delta) { constexpr int AmbientDim = VT::RowsAtCompileTime; // Map the delta from the minimum representation to the over parameterized // homogeneous vector. See B.2 p.25 equation (106) - (107) for more details. const double sin_delta_by_delta = std::sin(norm_delta) / norm_delta; Eigen::Matrix y(v.size()); y << sin_delta_by_delta * delta, std::cos(norm_delta); // Apply the delta update to remain on the sphere. *x_plus_delta = x.norm() * ApplyHouseholderVector(y, v, beta); } template inline void ComputeSphereManifoldPlusJacobian(const VT& x, JacobianT* jacobian) { constexpr int AmbientSpaceDim = VT::RowsAtCompileTime; using AmbientVector = Eigen::Matrix; const int ambient_size = x.size(); const int tangent_size = x.size() - 1; AmbientVector v(ambient_size); double beta; // NOTE: The explicit template arguments are needed here because // ComputeHouseholderVector is templated and some versions of MSVC // have trouble deducing the type of v automatically. ComputeHouseholderVector(x, &v, &beta); // The Jacobian is equal to J = H.leftCols(size_ - 1) where H is the // Householder matrix (H = I - beta * v * v'). for (int i = 0; i < tangent_size; ++i) { (*jacobian).col(i) = -beta * v(i) * v; (*jacobian)(i, i) += 1.0; } (*jacobian) *= x.norm(); } template inline void ComputeSphereManifoldMinus( const VT& v, double beta, const XT& x, const YT& y, YMinusXT* y_minus_x) { constexpr int AmbientSpaceDim = VT::RowsAtCompileTime; constexpr int TangentSpaceDim = AmbientSpaceDim == Eigen::Dynamic ? Eigen::Dynamic : AmbientSpaceDim - 1; using AmbientVector = Eigen::Matrix; const int tangent_size = v.size() - 1; const AmbientVector hy = ApplyHouseholderVector(y, v, beta) / x.norm(); // Calculate y - x. See B.2 p.25 equation (108). const double y_last = hy[tangent_size]; const double hy_norm = hy.template head(tangent_size).norm(); if (hy_norm == 0.0) { y_minus_x->setZero(); y_minus_x->data()[tangent_size - 1] = y_last >= 0 ? 0.0 : constants::pi; } else { *y_minus_x = std::atan2(hy_norm, y_last) / hy_norm * hy.template head(tangent_size); } } template inline void ComputeSphereManifoldMinusJacobian(const VT& x, JacobianT* jacobian) { constexpr int AmbientSpaceDim = VT::RowsAtCompileTime; using AmbientVector = Eigen::Matrix; const int ambient_size = x.size(); const int tangent_size = x.size() - 1; AmbientVector v(ambient_size); double beta; // NOTE: The explicit template arguments are needed here because // ComputeHouseholderVector is templated and some versions of MSVC // have trouble deducing the type of v automatically. ComputeHouseholderVector(x, &v, &beta); // The Jacobian is equal to J = H.leftCols(size_ - 1) where H is the // Householder matrix (H = I - beta * v * v'). for (int i = 0; i < tangent_size; ++i) { // NOTE: The transpose is used for correctness (the product is expected to // be a row vector), although here there seems to be no difference between // transposing or not for Eigen (possibly a compile-time auto fix). (*jacobian).row(i) = -beta * v(i) * v.transpose(); (*jacobian)(i, i) += 1.0; } (*jacobian) /= x.norm(); } } // namespace ceres::internal #endif