import math import os import pytest import torch import torchvision from torchvision.io import _HAS_GPU_VIDEO_DECODER, VideoReader try: import av except ImportError: av = None VIDEO_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "videos") @pytest.mark.skipif(_HAS_GPU_VIDEO_DECODER is False, reason="Didn't compile with support for gpu decoder") class TestVideoGPUDecoder: @pytest.mark.skipif(av is None, reason="PyAV unavailable") @pytest.mark.parametrize( "video_file", [ "RATRACE_wave_f_nm_np1_fr_goo_37.avi", "TrumanShow_wave_f_nm_np1_fr_med_26.avi", "v_SoccerJuggling_g23_c01.avi", "v_SoccerJuggling_g24_c01.avi", "R6llTwEh07w.mp4", "SOX5yA1l24A.mp4", "WUzgd7C1pWA.mp4", ], ) def test_frame_reading(self, video_file): torchvision.set_video_backend("cuda") full_path = os.path.join(VIDEO_DIR, video_file) decoder = VideoReader(full_path) with av.open(full_path) as container: for av_frame in container.decode(container.streams.video[0]): av_frames = torch.tensor(av_frame.to_rgb(src_colorspace="ITU709").to_ndarray()) vision_frames = next(decoder)["data"] mean_delta = torch.mean(torch.abs(av_frames.float() - vision_frames.cpu().float())) assert mean_delta < 0.75 @pytest.mark.skipif(av is None, reason="PyAV unavailable") @pytest.mark.parametrize("keyframes", [True, False]) @pytest.mark.parametrize( "full_path, duration", [ (os.path.join(VIDEO_DIR, x), y) for x, y in [ ("v_SoccerJuggling_g23_c01.avi", 8.0), ("v_SoccerJuggling_g24_c01.avi", 8.0), ("R6llTwEh07w.mp4", 10.0), ("SOX5yA1l24A.mp4", 11.0), ("WUzgd7C1pWA.mp4", 11.0), ] ], ) def test_seek_reading(self, keyframes, full_path, duration): torchvision.set_video_backend("cuda") decoder = VideoReader(full_path) time = duration / 2 decoder.seek(time, keyframes_only=keyframes) with av.open(full_path) as container: container.seek(int(time * 1000000), any_frame=not keyframes, backward=False) for av_frame in container.decode(container.streams.video[0]): av_frames = torch.tensor(av_frame.to_rgb(src_colorspace="ITU709").to_ndarray()) vision_frames = next(decoder)["data"] mean_delta = torch.mean(torch.abs(av_frames.float() - vision_frames.cpu().float())) assert mean_delta < 0.75 @pytest.mark.skipif(av is None, reason="PyAV unavailable") @pytest.mark.parametrize( "video_file", [ "RATRACE_wave_f_nm_np1_fr_goo_37.avi", "TrumanShow_wave_f_nm_np1_fr_med_26.avi", "v_SoccerJuggling_g23_c01.avi", "v_SoccerJuggling_g24_c01.avi", "R6llTwEh07w.mp4", "SOX5yA1l24A.mp4", "WUzgd7C1pWA.mp4", ], ) def test_metadata(self, video_file): torchvision.set_video_backend("cuda") full_path = os.path.join(VIDEO_DIR, video_file) decoder = VideoReader(full_path) video_metadata = decoder.get_metadata()["video"] with av.open(full_path) as container: video = container.streams.video[0] av_duration = float(video.duration * video.time_base) assert math.isclose(video_metadata["duration"], av_duration, rel_tol=1e-2) assert math.isclose(video_metadata["fps"], video.base_rate, rel_tol=1e-2) if __name__ == "__main__": pytest.main([__file__])