import contextlib import itertools import tempfile import time import traceback import unittest.mock import warnings from datetime import datetime from distutils import dir_util from os import path from urllib.error import HTTPError, URLError from urllib.parse import urlparse from urllib.request import Request, urlopen import pytest from torchvision import datasets from torchvision.datasets.utils import _get_redirect_url, USER_AGENT def limit_requests_per_time(min_secs_between_requests=2.0): last_requests = {} def outer_wrapper(fn): def inner_wrapper(request, *args, **kwargs): url = request.full_url if isinstance(request, Request) else request netloc = urlparse(url).netloc last_request = last_requests.get(netloc) if last_request is not None: elapsed_secs = (datetime.now() - last_request).total_seconds() delta = min_secs_between_requests - elapsed_secs if delta > 0: time.sleep(delta) response = fn(request, *args, **kwargs) last_requests[netloc] = datetime.now() return response return inner_wrapper return outer_wrapper urlopen = limit_requests_per_time()(urlopen) def resolve_redirects(max_hops=3): def outer_wrapper(fn): def inner_wrapper(request, *args, **kwargs): initial_url = request.full_url if isinstance(request, Request) else request url = _get_redirect_url(initial_url, max_hops=max_hops) if url == initial_url: return fn(request, *args, **kwargs) warnings.warn(f"The URL {initial_url} ultimately redirects to {url}.") if not isinstance(request, Request): return fn(url, *args, **kwargs) request_attrs = { attr: getattr(request, attr) for attr in ("data", "headers", "origin_req_host", "unverifiable") } # the 'method' attribute does only exist if the request was created with it if hasattr(request, "method"): request_attrs["method"] = request.method return fn(Request(url, **request_attrs), *args, **kwargs) return inner_wrapper return outer_wrapper urlopen = resolve_redirects()(urlopen) @contextlib.contextmanager def log_download_attempts( urls, *, dataset_module, ): def maybe_add_mock(*, module, name, stack, lst=None): patcher = unittest.mock.patch(f"torchvision.datasets.{module}.{name}") try: mock = stack.enter_context(patcher) except AttributeError: return if lst is not None: lst.append(mock) with contextlib.ExitStack() as stack: download_url_mocks = [] download_file_from_google_drive_mocks = [] for module in [dataset_module, "utils"]: maybe_add_mock(module=module, name="download_url", stack=stack, lst=download_url_mocks) maybe_add_mock( module=module, name="download_file_from_google_drive", stack=stack, lst=download_file_from_google_drive_mocks, ) maybe_add_mock(module=module, name="extract_archive", stack=stack) try: yield finally: for download_url_mock in download_url_mocks: for args, kwargs in download_url_mock.call_args_list: urls.append(args[0] if args else kwargs["url"]) for download_file_from_google_drive_mock in download_file_from_google_drive_mocks: for args, kwargs in download_file_from_google_drive_mock.call_args_list: file_id = args[0] if args else kwargs["file_id"] urls.append(f"https://drive.google.com/file/d/{file_id}") def retry(fn, times=1, wait=5.0): tbs = [] for _ in range(times + 1): try: return fn() except AssertionError as error: tbs.append("".join(traceback.format_exception(type(error), error, error.__traceback__))) time.sleep(wait) else: raise AssertionError( "\n".join( ( "\n", *[f"{'_' * 40} {idx:2d} {'_' * 40}\n\n{tb}" for idx, tb in enumerate(tbs, 1)], ( f"Assertion failed {times + 1} times with {wait:.1f} seconds intermediate wait time. " f"You can find the the full tracebacks above." ), ) ) ) @contextlib.contextmanager def assert_server_response_ok(): try: yield except HTTPError as error: raise AssertionError(f"The server returned {error.code}: {error.reason}.") from error except URLError as error: raise AssertionError( "Connection not possible due to SSL." if "SSL" in str(error) else "The request timed out." ) from error except RecursionError as error: raise AssertionError(str(error)) from error def assert_url_is_accessible(url, timeout=5.0): request = Request(url, headers={"User-Agent": USER_AGENT}, method="HEAD") with assert_server_response_ok(): urlopen(request, timeout=timeout) def collect_urls(dataset_cls, *args, **kwargs): urls = [] with contextlib.suppress(Exception), log_download_attempts( urls, dataset_module=dataset_cls.__module__.split(".")[-1] ): dataset_cls(*args, **kwargs) return [(url, f"{dataset_cls.__name__}, {url}") for url in urls] # This is a workaround since fixtures, such as the built-in tmp_dir, can only be used within a test but not within a # parametrization. Thus, we use a single root directory for all datasets and remove it when all download tests are run. ROOT = tempfile.mkdtemp() @pytest.fixture(scope="module", autouse=True) def root(): yield ROOT dir_util.remove_tree(ROOT) def places365(): return itertools.chain.from_iterable( [ collect_urls( datasets.Places365, ROOT, split=split, small=small, download=True, ) for split, small in itertools.product(("train-standard", "train-challenge", "val"), (False, True)) ] ) def caltech101(): return collect_urls(datasets.Caltech101, ROOT, download=True) def caltech256(): return collect_urls(datasets.Caltech256, ROOT, download=True) def cifar10(): return collect_urls(datasets.CIFAR10, ROOT, download=True) def cifar100(): return collect_urls(datasets.CIFAR100, ROOT, download=True) def voc(): # TODO: Also test the "2007-test" key return itertools.chain.from_iterable( [ collect_urls(datasets.VOCSegmentation, ROOT, year=year, download=True) for year in ("2007", "2008", "2009", "2010", "2011", "2012") ] ) def mnist(): with unittest.mock.patch.object(datasets.MNIST, "mirrors", datasets.MNIST.mirrors[-1:]): return collect_urls(datasets.MNIST, ROOT, download=True) def fashion_mnist(): return collect_urls(datasets.FashionMNIST, ROOT, download=True) def kmnist(): return collect_urls(datasets.KMNIST, ROOT, download=True) def emnist(): # the 'split' argument can be any valid one, since everything is downloaded anyway return collect_urls(datasets.EMNIST, ROOT, split="byclass", download=True) def qmnist(): return itertools.chain.from_iterable( [collect_urls(datasets.QMNIST, ROOT, what=what, download=True) for what in ("train", "test", "nist")] ) def moving_mnist(): return collect_urls(datasets.MovingMNIST, ROOT, download=True) def omniglot(): return itertools.chain.from_iterable( [collect_urls(datasets.Omniglot, ROOT, background=background, download=True) for background in (True, False)] ) def phototour(): return itertools.chain.from_iterable( [ collect_urls(datasets.PhotoTour, ROOT, name=name, download=True) # The names postfixed with '_harris' point to the domain 'matthewalunbrown.com'. For some reason all # requests timeout from within CI. They are disabled until this is resolved. for name in ("notredame", "yosemite", "liberty") # "notredame_harris", "yosemite_harris", "liberty_harris" ] ) def sbdataset(): return collect_urls(datasets.SBDataset, ROOT, download=True) def sbu(): return collect_urls(datasets.SBU, ROOT, download=True) def semeion(): return collect_urls(datasets.SEMEION, ROOT, download=True) def stl10(): return collect_urls(datasets.STL10, ROOT, download=True) def svhn(): return itertools.chain.from_iterable( [collect_urls(datasets.SVHN, ROOT, split=split, download=True) for split in ("train", "test", "extra")] ) def usps(): return itertools.chain.from_iterable( [collect_urls(datasets.USPS, ROOT, train=train, download=True) for train in (True, False)] ) def celeba(): return collect_urls(datasets.CelebA, ROOT, download=True) def widerface(): return collect_urls(datasets.WIDERFace, ROOT, download=True) def kinetics(): return itertools.chain.from_iterable( [ collect_urls( datasets.Kinetics, path.join(ROOT, f"Kinetics{num_classes}"), frames_per_clip=1, num_classes=num_classes, split=split, download=True, ) for num_classes, split in itertools.product(("400", "600", "700"), ("train", "val")) ] ) def kitti(): return itertools.chain.from_iterable( [collect_urls(datasets.Kitti, ROOT, train=train, download=True) for train in (True, False)] ) def stanford_cars(): return itertools.chain.from_iterable( [collect_urls(datasets.StanfordCars, ROOT, split=split, download=True) for split in ["train", "test"]] ) def url_parametrization(*dataset_urls_and_ids_fns): return pytest.mark.parametrize( "url", [ pytest.param(url, id=id) for dataset_urls_and_ids_fn in dataset_urls_and_ids_fns for url, id in sorted(set(dataset_urls_and_ids_fn())) ], ) @url_parametrization( caltech101, caltech256, cifar10, cifar100, # The VOC download server is unstable. See https://github.com/pytorch/vision/issues/2953 for details. # voc, mnist, fashion_mnist, kmnist, emnist, qmnist, omniglot, phototour, sbdataset, semeion, stl10, svhn, usps, celeba, widerface, kinetics, kitti, places365, sbu, ) def test_url_is_accessible(url): """ If you see this test failing, find the offending dataset in the parametrization and move it to ``test_url_is_not_accessible`` and link an issue detailing the problem. """ retry(lambda: assert_url_is_accessible(url)) @url_parametrization( stanford_cars, # https://github.com/pytorch/vision/issues/7545 ) @pytest.mark.xfail def test_url_is_not_accessible(url): """ As the name implies, this test is the 'inverse' of ``test_url_is_accessible``. Since the download servers are beyond our control, some files might not be accessible for longer stretches of time. Still, we want to know if they come back up, or if we need to remove the download functionality of the dataset for good. If you see this test failing, find the offending dataset in the parametrization and move it to ``test_url_is_accessible``. """ retry(lambda: assert_url_is_accessible(url))