import bz2
import contextlib
import csv
import io
import itertools
import json
import os
import pathlib
import pickle
import random
import re
import shutil
import string
import unittest
import xml.etree.ElementTree as ET
import zipfile
from typing import Callable, Tuple, Union
import datasets_utils
import numpy as np
import PIL
import pytest
import torch
import torch.nn.functional as F
from common_utils import combinations_grid
from torchvision import datasets
class STL10TestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.STL10
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "test", "unlabeled", "train+unlabeled"))
@staticmethod
def _make_binary_file(num_elements, root, name):
file_name = os.path.join(root, name)
np.zeros(num_elements, dtype=np.uint8).tofile(file_name)
@staticmethod
def _make_image_file(num_images, root, name, num_channels=3, height=96, width=96):
STL10TestCase._make_binary_file(num_images * num_channels * height * width, root, name)
@staticmethod
def _make_label_file(num_images, root, name):
STL10TestCase._make_binary_file(num_images, root, name)
@staticmethod
def _make_class_names_file(root, name="class_names.txt"):
with open(os.path.join(root, name), "w") as fh:
for cname in ("airplane", "bird"):
fh.write(f"{cname}\n")
@staticmethod
def _make_fold_indices_file(root):
num_folds = 10
offset = 0
with open(os.path.join(root, "fold_indices.txt"), "w") as fh:
for fold in range(num_folds):
line = " ".join([str(idx) for idx in range(offset, offset + fold + 1)])
fh.write(f"{line}\n")
offset += fold + 1
return tuple(range(1, num_folds + 1))
@staticmethod
def _make_train_files(root, num_unlabeled_images=1):
num_images_in_fold = STL10TestCase._make_fold_indices_file(root)
num_train_images = sum(num_images_in_fold)
STL10TestCase._make_image_file(num_train_images, root, "train_X.bin")
STL10TestCase._make_label_file(num_train_images, root, "train_y.bin")
STL10TestCase._make_image_file(1, root, "unlabeled_X.bin")
return dict(train=num_train_images, unlabeled=num_unlabeled_images)
@staticmethod
def _make_test_files(root, num_images=2):
STL10TestCase._make_image_file(num_images, root, "test_X.bin")
STL10TestCase._make_label_file(num_images, root, "test_y.bin")
return dict(test=num_images)
def inject_fake_data(self, tmpdir, config):
root_folder = os.path.join(tmpdir, "stl10_binary")
os.mkdir(root_folder)
num_images_in_split = self._make_train_files(root_folder)
num_images_in_split.update(self._make_test_files(root_folder))
self._make_class_names_file(root_folder)
return sum(num_images_in_split[part] for part in config["split"].split("+"))
def test_folds(self):
for fold in range(10):
with self.create_dataset(split="train", folds=fold) as (dataset, _):
assert len(dataset) == fold + 1
def test_unlabeled(self):
with self.create_dataset(split="unlabeled") as (dataset, _):
labels = [dataset[idx][1] for idx in range(len(dataset))]
assert all(label == -1 for label in labels)
def test_invalid_folds1(self):
with pytest.raises(ValueError):
with self.create_dataset(folds=10):
pass
def test_invalid_folds2(self):
with pytest.raises(ValueError):
with self.create_dataset(folds="0"):
pass
class Caltech101TestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.Caltech101
FEATURE_TYPES = (PIL.Image.Image, (int, np.ndarray, tuple))
ADDITIONAL_CONFIGS = combinations_grid(target_type=("category", "annotation", ["category", "annotation"]))
REQUIRED_PACKAGES = ("scipy",)
def inject_fake_data(self, tmpdir, config):
root = pathlib.Path(tmpdir) / "caltech101"
images = root / "101_ObjectCategories"
annotations = root / "Annotations"
categories = (("Faces", "Faces_2"), ("helicopter", "helicopter"), ("ying_yang", "ying_yang"))
num_images_per_category = 2
for image_category, annotation_category in categories:
datasets_utils.create_image_folder(
root=images,
name=image_category,
file_name_fn=lambda idx: f"image_{idx + 1:04d}.jpg",
num_examples=num_images_per_category,
)
self._create_annotation_folder(
root=annotations,
name=annotation_category,
file_name_fn=lambda idx: f"annotation_{idx + 1:04d}.mat",
num_examples=num_images_per_category,
)
# This is included in the original archive, but is removed by the dataset. Thus, an empty directory suffices.
os.makedirs(images / "BACKGROUND_Google")
return num_images_per_category * len(categories)
def _create_annotation_folder(self, root, name, file_name_fn, num_examples):
root = pathlib.Path(root) / name
os.makedirs(root)
for idx in range(num_examples):
self._create_annotation_file(root, file_name_fn(idx))
def _create_annotation_file(self, root, name):
mdict = dict(obj_contour=torch.rand((2, torch.randint(3, 6, size=())), dtype=torch.float64).numpy())
datasets_utils.lazy_importer.scipy.io.savemat(str(pathlib.Path(root) / name), mdict)
def test_combined_targets(self):
target_types = ["category", "annotation"]
individual_targets = []
for target_type in target_types:
with self.create_dataset(target_type=target_type) as (dataset, _):
_, target = dataset[0]
individual_targets.append(target)
with self.create_dataset(target_type=target_types) as (dataset, _):
_, combined_targets = dataset[0]
actual = len(individual_targets)
expected = len(combined_targets)
assert (
actual == expected
), "The number of the returned combined targets does not match the the number targets if requested "
f"individually: {actual} != {expected}",
for target_type, combined_target, individual_target in zip(target_types, combined_targets, individual_targets):
with self.subTest(target_type=target_type):
actual = type(combined_target)
expected = type(individual_target)
assert (
actual is expected
), "Type of the combined target does not match the type of the corresponding individual target: "
f"{actual} is not {expected}",
def test_transforms_v2_wrapper_spawn(self):
with self.create_dataset(target_type="category") as (dataset, _):
datasets_utils.check_transforms_v2_wrapper_spawn(dataset)
class Caltech256TestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.Caltech256
def inject_fake_data(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir) / "caltech256" / "256_ObjectCategories"
categories = ((1, "ak47"), (2, "american-flag"), (3, "backpack"))
num_images_per_category = 2
for idx, category in categories:
datasets_utils.create_image_folder(
tmpdir,
name=f"{idx:03d}.{category}",
file_name_fn=lambda image_idx: f"{idx:03d}_{image_idx + 1:04d}.jpg",
num_examples=num_images_per_category,
)
return num_images_per_category * len(categories)
class WIDERFaceTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.WIDERFace
FEATURE_TYPES = (PIL.Image.Image, (dict, type(None))) # test split returns None as target
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "val", "test"))
def inject_fake_data(self, tmpdir, config):
widerface_dir = pathlib.Path(tmpdir) / "widerface"
annotations_dir = widerface_dir / "wider_face_split"
os.makedirs(annotations_dir)
split_to_idx = split_to_num_examples = {
"train": 1,
"val": 2,
"test": 3,
}
# We need to create all folders regardless of the split in config
for split in ("train", "val", "test"):
split_idx = split_to_idx[split]
num_examples = split_to_num_examples[split]
datasets_utils.create_image_folder(
root=tmpdir,
name=widerface_dir / f"WIDER_{split}" / "images" / "0--Parade",
file_name_fn=lambda image_idx: f"0_Parade_marchingband_1_{split_idx + image_idx}.jpg",
num_examples=num_examples,
)
annotation_file_name = {
"train": annotations_dir / "wider_face_train_bbx_gt.txt",
"val": annotations_dir / "wider_face_val_bbx_gt.txt",
"test": annotations_dir / "wider_face_test_filelist.txt",
}[split]
annotation_content = {
"train": "".join(
f"0--Parade/0_Parade_marchingband_1_{split_idx + image_idx}.jpg\n1\n449 330 122 149 0 0 0 0 0 0\n"
for image_idx in range(num_examples)
),
"val": "".join(
f"0--Parade/0_Parade_marchingband_1_{split_idx + image_idx}.jpg\n1\n501 160 285 443 0 0 0 0 0 0\n"
for image_idx in range(num_examples)
),
"test": "".join(
f"0--Parade/0_Parade_marchingband_1_{split_idx + image_idx}.jpg\n"
for image_idx in range(num_examples)
),
}[split]
with open(annotation_file_name, "w") as annotation_file:
annotation_file.write(annotation_content)
return split_to_num_examples[config["split"]]
def test_transforms_v2_wrapper_spawn(self):
with self.create_dataset() as (dataset, _):
datasets_utils.check_transforms_v2_wrapper_spawn(dataset)
class CityScapesTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.Cityscapes
TARGET_TYPES = (
"instance",
"semantic",
"polygon",
"color",
)
ADDITIONAL_CONFIGS = (
*combinations_grid(mode=("fine",), split=("train", "test", "val"), target_type=TARGET_TYPES),
*combinations_grid(
mode=("coarse",),
split=("train", "train_extra", "val"),
target_type=TARGET_TYPES,
),
)
FEATURE_TYPES = (PIL.Image.Image, (dict, PIL.Image.Image))
def inject_fake_data(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir)
mode_to_splits = {
"Coarse": ["train", "train_extra", "val"],
"Fine": ["train", "test", "val"],
}
if config["split"] == "train": # just for coverage of the number of samples
cities = ["bochum", "bremen"]
else:
cities = ["bochum"]
polygon_target = {
"imgHeight": 1024,
"imgWidth": 2048,
"objects": [
{
"label": "sky",
"polygon": [
[1241, 0],
[1234, 156],
[1478, 197],
[1611, 172],
[1606, 0],
],
},
{
"label": "road",
"polygon": [
[0, 448],
[1331, 274],
[1473, 265],
[2047, 605],
[2047, 1023],
[0, 1023],
],
},
],
}
for mode in ["Coarse", "Fine"]:
gt_dir = tmpdir / f"gt{mode}"
for split in mode_to_splits[mode]:
for city in cities:
def make_image(name, size=10):
datasets_utils.create_image_folder(
root=gt_dir / split,
name=city,
file_name_fn=lambda _: name,
size=size,
num_examples=1,
)
make_image(f"{city}_000000_000000_gt{mode}_instanceIds.png")
make_image(f"{city}_000000_000000_gt{mode}_labelIds.png")
make_image(f"{city}_000000_000000_gt{mode}_color.png", size=(4, 10, 10))
polygon_target_name = gt_dir / split / city / f"{city}_000000_000000_gt{mode}_polygons.json"
with open(polygon_target_name, "w") as outfile:
json.dump(polygon_target, outfile)
# Create leftImg8bit folder
for split in ["test", "train_extra", "train", "val"]:
for city in cities:
datasets_utils.create_image_folder(
root=tmpdir / "leftImg8bit" / split,
name=city,
file_name_fn=lambda _: f"{city}_000000_000000_leftImg8bit.png",
num_examples=1,
)
info = {"num_examples": len(cities)}
if config["target_type"] == "polygon":
info["expected_polygon_target"] = polygon_target
return info
def test_combined_targets(self):
target_types = ["semantic", "polygon", "color"]
with self.create_dataset(target_type=target_types) as (dataset, _):
output = dataset[0]
assert isinstance(output, tuple)
assert len(output) == 2
assert isinstance(output[0], PIL.Image.Image)
assert isinstance(output[1], tuple)
assert len(output[1]) == 3
assert isinstance(output[1][0], PIL.Image.Image) # semantic
assert isinstance(output[1][1], dict) # polygon
assert isinstance(output[1][2], PIL.Image.Image) # color
def test_feature_types_target_color(self):
with self.create_dataset(target_type="color") as (dataset, _):
color_img, color_target = dataset[0]
assert isinstance(color_img, PIL.Image.Image)
assert np.array(color_target).shape[2] == 4
def test_feature_types_target_polygon(self):
with self.create_dataset(target_type="polygon") as (dataset, info):
polygon_img, polygon_target = dataset[0]
assert isinstance(polygon_img, PIL.Image.Image)
(polygon_target, info["expected_polygon_target"])
def test_transforms_v2_wrapper_spawn(self):
for target_type in ["instance", "semantic", ["instance", "semantic"]]:
with self.create_dataset(target_type=target_type) as (dataset, _):
datasets_utils.check_transforms_v2_wrapper_spawn(dataset)
class ImageNetTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.ImageNet
REQUIRED_PACKAGES = ("scipy",)
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "val"))
def inject_fake_data(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir)
wnid = "n01234567"
if config["split"] == "train":
num_examples = 3
datasets_utils.create_image_folder(
root=tmpdir,
name=tmpdir / "train" / wnid / wnid,
file_name_fn=lambda image_idx: f"{wnid}_{image_idx}.JPEG",
num_examples=num_examples,
)
else:
num_examples = 1
datasets_utils.create_image_folder(
root=tmpdir,
name=tmpdir / "val" / wnid,
file_name_fn=lambda image_ifx: "ILSVRC2012_val_0000000{image_idx}.JPEG",
num_examples=num_examples,
)
wnid_to_classes = {wnid: [1]}
torch.save((wnid_to_classes, None), tmpdir / "meta.bin")
return num_examples
def test_transforms_v2_wrapper_spawn(self):
with self.create_dataset() as (dataset, _):
datasets_utils.check_transforms_v2_wrapper_spawn(dataset)
class CIFAR10TestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.CIFAR10
ADDITIONAL_CONFIGS = combinations_grid(train=(True, False))
_VERSION_CONFIG = dict(
base_folder="cifar-10-batches-py",
train_files=tuple(f"data_batch_{idx}" for idx in range(1, 6)),
test_files=("test_batch",),
labels_key="labels",
meta_file="batches.meta",
num_categories=10,
categories_key="label_names",
)
def inject_fake_data(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir) / self._VERSION_CONFIG["base_folder"]
os.makedirs(tmpdir)
num_images_per_file = 1
for name in itertools.chain(self._VERSION_CONFIG["train_files"], self._VERSION_CONFIG["test_files"]):
self._create_batch_file(tmpdir, name, num_images_per_file)
categories = self._create_meta_file(tmpdir)
return dict(
num_examples=num_images_per_file
* len(self._VERSION_CONFIG["train_files"] if config["train"] else self._VERSION_CONFIG["test_files"]),
categories=categories,
)
def _create_batch_file(self, root, name, num_images):
np_rng = np.random.RandomState(0)
data = datasets_utils.create_image_or_video_tensor((num_images, 32 * 32 * 3))
labels = np_rng.randint(0, self._VERSION_CONFIG["num_categories"], size=num_images).tolist()
self._create_binary_file(root, name, {"data": data, self._VERSION_CONFIG["labels_key"]: labels})
def _create_meta_file(self, root):
categories = [
f"{idx:0{len(str(self._VERSION_CONFIG['num_categories'] - 1))}d}"
for idx in range(self._VERSION_CONFIG["num_categories"])
]
self._create_binary_file(
root, self._VERSION_CONFIG["meta_file"], {self._VERSION_CONFIG["categories_key"]: categories}
)
return categories
def _create_binary_file(self, root, name, content):
with open(pathlib.Path(root) / name, "wb") as fh:
pickle.dump(content, fh)
def test_class_to_idx(self):
with self.create_dataset() as (dataset, info):
expected = {category: label for label, category in enumerate(info["categories"])}
actual = dataset.class_to_idx
assert actual == expected
class CIFAR100(CIFAR10TestCase):
DATASET_CLASS = datasets.CIFAR100
_VERSION_CONFIG = dict(
base_folder="cifar-100-python",
train_files=("train",),
test_files=("test",),
labels_key="fine_labels",
meta_file="meta",
num_categories=100,
categories_key="fine_label_names",
)
class CelebATestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.CelebA
FEATURE_TYPES = (PIL.Image.Image, (torch.Tensor, int, tuple, type(None)))
ADDITIONAL_CONFIGS = combinations_grid(
split=("train", "valid", "test", "all"),
target_type=("attr", "identity", "bbox", "landmarks", ["attr", "identity"]),
)
_SPLIT_TO_IDX = dict(train=0, valid=1, test=2)
def inject_fake_data(self, tmpdir, config):
base_folder = pathlib.Path(tmpdir) / "celeba"
os.makedirs(base_folder)
num_images, num_images_per_split = self._create_split_txt(base_folder)
datasets_utils.create_image_folder(
base_folder, "img_align_celeba", lambda idx: f"{idx + 1:06d}.jpg", num_images
)
attr_names = self._create_attr_txt(base_folder, num_images)
self._create_identity_txt(base_folder, num_images)
self._create_bbox_txt(base_folder, num_images)
self._create_landmarks_txt(base_folder, num_images)
return dict(num_examples=num_images_per_split[config["split"]], attr_names=attr_names)
def _create_split_txt(self, root):
num_images_per_split = dict(train=4, valid=3, test=2)
data = [
[self._SPLIT_TO_IDX[split]] for split, num_images in num_images_per_split.items() for _ in range(num_images)
]
self._create_txt(root, "list_eval_partition.txt", data)
num_images_per_split["all"] = num_images = sum(num_images_per_split.values())
return num_images, num_images_per_split
def _create_attr_txt(self, root, num_images):
header = ("5_o_Clock_Shadow", "Young")
data = torch.rand((num_images, len(header))).ge(0.5).int().mul(2).sub(1).tolist()
self._create_txt(root, "list_attr_celeba.txt", data, header=header, add_num_examples=True)
return header
def _create_identity_txt(self, root, num_images):
data = torch.randint(1, 4, size=(num_images, 1)).tolist()
self._create_txt(root, "identity_CelebA.txt", data)
def _create_bbox_txt(self, root, num_images):
header = ("x_1", "y_1", "width", "height")
data = torch.randint(10, size=(num_images, len(header))).tolist()
self._create_txt(
root, "list_bbox_celeba.txt", data, header=header, add_num_examples=True, add_image_id_to_header=True
)
def _create_landmarks_txt(self, root, num_images):
header = ("lefteye_x", "rightmouth_y")
data = torch.randint(10, size=(num_images, len(header))).tolist()
self._create_txt(root, "list_landmarks_align_celeba.txt", data, header=header, add_num_examples=True)
def _create_txt(self, root, name, data, header=None, add_num_examples=False, add_image_id_to_header=False):
with open(pathlib.Path(root) / name, "w") as fh:
if add_num_examples:
fh.write(f"{len(data)}\n")
if header:
if add_image_id_to_header:
header = ("image_id", *header)
fh.write(f"{' '.join(header)}\n")
for idx, line in enumerate(data, 1):
fh.write(f"{' '.join((f'{idx:06d}.jpg', *[str(value) for value in line]))}\n")
def test_combined_targets(self):
target_types = ["attr", "identity", "bbox", "landmarks"]
individual_targets = []
for target_type in target_types:
with self.create_dataset(target_type=target_type) as (dataset, _):
_, target = dataset[0]
individual_targets.append(target)
with self.create_dataset(target_type=target_types) as (dataset, _):
_, combined_targets = dataset[0]
actual = len(individual_targets)
expected = len(combined_targets)
assert (
actual == expected
), "The number of the returned combined targets does not match the the number targets if requested "
f"individually: {actual} != {expected}",
for target_type, combined_target, individual_target in zip(target_types, combined_targets, individual_targets):
with self.subTest(target_type=target_type):
actual = type(combined_target)
expected = type(individual_target)
assert (
actual is expected
), "Type of the combined target does not match the type of the corresponding individual target: "
f"{actual} is not {expected}",
def test_no_target(self):
with self.create_dataset(target_type=[]) as (dataset, _):
_, target = dataset[0]
assert target is None
def test_attr_names(self):
with self.create_dataset() as (dataset, info):
assert tuple(dataset.attr_names) == info["attr_names"]
def test_images_names_split(self):
with self.create_dataset(split="all") as (dataset, _):
all_imgs_names = set(dataset.filename)
merged_imgs_names = set()
for split in ["train", "valid", "test"]:
with self.create_dataset(split=split) as (dataset, _):
merged_imgs_names.update(dataset.filename)
assert merged_imgs_names == all_imgs_names
def test_transforms_v2_wrapper_spawn(self):
for target_type in ["identity", "bbox", ["identity", "bbox"]]:
with self.create_dataset(target_type=target_type) as (dataset, _):
datasets_utils.check_transforms_v2_wrapper_spawn(dataset)
class VOCSegmentationTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.VOCSegmentation
FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image)
ADDITIONAL_CONFIGS = (
*combinations_grid(year=[f"20{year:02d}" for year in range(7, 13)], image_set=("train", "val", "trainval")),
dict(year="2007", image_set="test"),
)
def inject_fake_data(self, tmpdir, config):
year, is_test_set = config["year"], config["image_set"] == "test"
image_set = config["image_set"]
base_dir = pathlib.Path(tmpdir)
if year == "2011":
base_dir /= "TrainVal"
base_dir = base_dir / "VOCdevkit" / f"VOC{year}"
os.makedirs(base_dir)
num_images, num_images_per_image_set = self._create_image_set_files(base_dir, "ImageSets", is_test_set)
datasets_utils.create_image_folder(base_dir, "JPEGImages", lambda idx: f"{idx:06d}.jpg", num_images)
datasets_utils.create_image_folder(base_dir, "SegmentationClass", lambda idx: f"{idx:06d}.png", num_images)
annotation = self._create_annotation_files(base_dir, "Annotations", num_images)
return dict(num_examples=num_images_per_image_set[image_set], annotation=annotation)
def _create_image_set_files(self, root, name, is_test_set):
root = pathlib.Path(root) / name
src = pathlib.Path(root) / "Main"
os.makedirs(src, exist_ok=True)
idcs = dict(train=(0, 1, 2), val=(3, 4), test=(5,))
idcs["trainval"] = (*idcs["train"], *idcs["val"])
for image_set in ("test",) if is_test_set else ("train", "val", "trainval"):
self._create_image_set_file(src, image_set, idcs[image_set])
shutil.copytree(src, root / "Segmentation")
num_images = max(itertools.chain(*idcs.values())) + 1
num_images_per_image_set = {image_set: len(idcs_) for image_set, idcs_ in idcs.items()}
return num_images, num_images_per_image_set
def _create_image_set_file(self, root, image_set, idcs):
with open(pathlib.Path(root) / f"{image_set}.txt", "w") as fh:
fh.writelines([f"{idx:06d}\n" for idx in idcs])
def _create_annotation_files(self, root, name, num_images):
root = pathlib.Path(root) / name
os.makedirs(root)
for idx in range(num_images):
annotation = self._create_annotation_file(root, f"{idx:06d}.xml")
return annotation
def _create_annotation_file(self, root, name):
def add_child(parent, name, text=None):
child = ET.SubElement(parent, name)
child.text = text
return child
def add_name(obj, name="dog"):
add_child(obj, "name", name)
return name
def add_bndbox(obj, bndbox=None):
if bndbox is None:
bndbox = {"xmin": "1", "xmax": "2", "ymin": "3", "ymax": "4"}
obj = add_child(obj, "bndbox")
for name, text in bndbox.items():
add_child(obj, name, text)
return bndbox
annotation = ET.Element("annotation")
obj = add_child(annotation, "object")
data = dict(name=add_name(obj), bndbox=add_bndbox(obj))
with open(pathlib.Path(root) / name, "wb") as fh:
fh.write(ET.tostring(annotation))
return data
def test_transforms_v2_wrapper_spawn(self):
with self.create_dataset() as (dataset, _):
datasets_utils.check_transforms_v2_wrapper_spawn(dataset)
class VOCDetectionTestCase(VOCSegmentationTestCase):
DATASET_CLASS = datasets.VOCDetection
FEATURE_TYPES = (PIL.Image.Image, dict)
def test_annotations(self):
with self.create_dataset() as (dataset, info):
_, target = dataset[0]
assert "annotation" in target
annotation = target["annotation"]
assert "object" in annotation
objects = annotation["object"]
assert len(objects) == 1
object = objects[0]
assert object == info["annotation"]
def test_transforms_v2_wrapper_spawn(self):
with self.create_dataset() as (dataset, _):
datasets_utils.check_transforms_v2_wrapper_spawn(dataset)
class CocoDetectionTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.CocoDetection
FEATURE_TYPES = (PIL.Image.Image, list)
REQUIRED_PACKAGES = ("pycocotools",)
_IMAGE_FOLDER = "images"
_ANNOTATIONS_FOLDER = "annotations"
_ANNOTATIONS_FILE = "annotations.json"
def dataset_args(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir)
root = tmpdir / self._IMAGE_FOLDER
annotation_file = tmpdir / self._ANNOTATIONS_FOLDER / self._ANNOTATIONS_FILE
return root, annotation_file
def inject_fake_data(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir)
num_images = 3
num_annotations_per_image = 2
files = datasets_utils.create_image_folder(
tmpdir, name=self._IMAGE_FOLDER, file_name_fn=lambda idx: f"{idx:012d}.jpg", num_examples=num_images
)
file_names = [file.relative_to(tmpdir / self._IMAGE_FOLDER) for file in files]
annotation_folder = tmpdir / self._ANNOTATIONS_FOLDER
os.makedirs(annotation_folder)
info = self._create_annotation_file(
annotation_folder, self._ANNOTATIONS_FILE, file_names, num_annotations_per_image
)
info["num_examples"] = num_images
return info
def _create_annotation_file(self, root, name, file_names, num_annotations_per_image):
image_ids = [int(file_name.stem) for file_name in file_names]
images = [dict(file_name=str(file_name), id=id) for file_name, id in zip(file_names, image_ids)]
annotations, info = self._create_annotations(image_ids, num_annotations_per_image)
self._create_json(root, name, dict(images=images, annotations=annotations))
return info
def _create_annotations(self, image_ids, num_annotations_per_image):
annotations = []
annotion_id = 0
for image_id in itertools.islice(itertools.cycle(image_ids), len(image_ids) * num_annotations_per_image):
annotations.append(
dict(
image_id=image_id,
id=annotion_id,
bbox=torch.rand(4).tolist(),
segmentation=[torch.rand(8).tolist()],
category_id=int(torch.randint(91, ())),
area=float(torch.rand(1)),
iscrowd=int(torch.randint(2, size=(1,))),
)
)
annotion_id += 1
return annotations, dict()
def _create_json(self, root, name, content):
file = pathlib.Path(root) / name
with open(file, "w") as fh:
json.dump(content, fh)
return file
def test_transforms_v2_wrapper_spawn(self):
with self.create_dataset() as (dataset, _):
datasets_utils.check_transforms_v2_wrapper_spawn(dataset)
class CocoCaptionsTestCase(CocoDetectionTestCase):
DATASET_CLASS = datasets.CocoCaptions
def _create_annotations(self, image_ids, num_annotations_per_image):
captions = [str(idx) for idx in range(num_annotations_per_image)]
annotations = combinations_grid(image_id=image_ids, caption=captions)
for id, annotation in enumerate(annotations):
annotation["id"] = id
return annotations, dict(captions=captions)
def test_captions(self):
with self.create_dataset() as (dataset, info):
_, captions = dataset[0]
assert tuple(captions) == tuple(info["captions"])
def test_transforms_v2_wrapper_spawn(self):
# We need to define this method, because otherwise the test from the super class will
# be run
pytest.skip("CocoCaptions is currently not supported by the v2 wrapper.")
class UCF101TestCase(datasets_utils.VideoDatasetTestCase):
DATASET_CLASS = datasets.UCF101
ADDITIONAL_CONFIGS = combinations_grid(fold=(1, 2, 3), train=(True, False))
_VIDEO_FOLDER = "videos"
_ANNOTATIONS_FOLDER = "annotations"
def dataset_args(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir)
root = tmpdir / self._VIDEO_FOLDER
annotation_path = tmpdir / self._ANNOTATIONS_FOLDER
return root, annotation_path
def inject_fake_data(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir)
video_folder = tmpdir / self._VIDEO_FOLDER
os.makedirs(video_folder)
video_files = self._create_videos(video_folder)
annotations_folder = tmpdir / self._ANNOTATIONS_FOLDER
os.makedirs(annotations_folder)
num_examples = self._create_annotation_files(annotations_folder, video_files, config["fold"], config["train"])
return num_examples
def _create_videos(self, root, num_examples_per_class=3):
def file_name_fn(cls, idx, clips_per_group=2):
return f"v_{cls}_g{(idx // clips_per_group) + 1:02d}_c{(idx % clips_per_group) + 1:02d}.avi"
video_files = [
datasets_utils.create_video_folder(root, cls, lambda idx: file_name_fn(cls, idx), num_examples_per_class)
for cls in ("ApplyEyeMakeup", "YoYo")
]
return [path.relative_to(root) for path in itertools.chain(*video_files)]
def _create_annotation_files(self, root, video_files, fold, train):
current_videos = random.sample(video_files, random.randrange(1, len(video_files) - 1))
current_annotation = self._annotation_file_name(fold, train)
self._create_annotation_file(root, current_annotation, current_videos)
other_videos = set(video_files) - set(current_videos)
other_annotations = [
self._annotation_file_name(fold, train) for fold, train in itertools.product((1, 2, 3), (True, False))
]
other_annotations.remove(current_annotation)
for name in other_annotations:
self._create_annotation_file(root, name, other_videos)
return len(current_videos)
def _annotation_file_name(self, fold, train):
return f"{'train' if train else 'test'}list{fold:02d}.txt"
def _create_annotation_file(self, root, name, video_files):
with open(pathlib.Path(root) / name, "w") as fh:
fh.writelines(f"{str(file).replace(os.sep, '/')}\n" for file in sorted(video_files))
class LSUNTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.LSUN
REQUIRED_PACKAGES = ("lmdb",)
ADDITIONAL_CONFIGS = combinations_grid(classes=("train", "test", "val", ["bedroom_train", "church_outdoor_train"]))
_CATEGORIES = (
"bedroom",
"bridge",
"church_outdoor",
"classroom",
"conference_room",
"dining_room",
"kitchen",
"living_room",
"restaurant",
"tower",
)
def inject_fake_data(self, tmpdir, config):
root = pathlib.Path(tmpdir)
num_images = 0
for cls in self._parse_classes(config["classes"]):
num_images += self._create_lmdb(root, cls)
return num_images
@contextlib.contextmanager
def create_dataset(self, *args, **kwargs):
with super().create_dataset(*args, **kwargs) as output:
yield output
# Currently datasets.LSUN caches the keys in the current directory rather than in the root directory. Thus,
# this creates a number of _cache_* files in the current directory that will not be removed together
# with the temporary directory
for file in os.listdir(os.getcwd()):
if file.startswith("_cache_"):
try:
os.remove(file)
except FileNotFoundError:
# When the same test is run in parallel (in fb internal tests), a thread may remove another
# thread's file. We should be able to remove the try/except when
# https://github.com/pytorch/vision/issues/825 is fixed.
pass
def _parse_classes(self, classes):
if not isinstance(classes, str):
return classes
split = classes
if split == "test":
return [split]
return [f"{category}_{split}" for category in self._CATEGORIES]
def _create_lmdb(self, root, cls):
lmdb = datasets_utils.lazy_importer.lmdb
hexdigits_lowercase = string.digits + string.ascii_lowercase[:6]
folder = f"{cls}_lmdb"
num_images = torch.randint(1, 4, size=()).item()
format = "png"
files = datasets_utils.create_image_folder(root, folder, lambda idx: f"{idx}.{format}", num_images)
with lmdb.open(str(root / folder)) as env, env.begin(write=True) as txn:
for file in files:
key = "".join(random.choice(hexdigits_lowercase) for _ in range(40)).encode()
buffer = io.BytesIO()
PIL.Image.open(file).save(buffer, format)
buffer.seek(0)
value = buffer.read()
txn.put(key, value)
os.remove(file)
return num_images
def test_not_found_or_corrupted(self):
# LSUN does not raise built-in exception, but a custom one. It is expressive enough to not 'cast' it to
# RuntimeError or FileNotFoundError that are normally checked by this test.
with pytest.raises(datasets_utils.lazy_importer.lmdb.Error):
super().test_not_found_or_corrupted()
class KineticsTestCase(datasets_utils.VideoDatasetTestCase):
DATASET_CLASS = datasets.Kinetics
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "val"), num_classes=("400", "600", "700"))
def inject_fake_data(self, tmpdir, config):
classes = ("Abseiling", "Zumba")
num_videos_per_class = 2
tmpdir = pathlib.Path(tmpdir) / config["split"]
digits = string.ascii_letters + string.digits + "-_"
for cls in classes:
datasets_utils.create_video_folder(
tmpdir,
cls,
lambda _: f"{datasets_utils.create_random_string(11, digits)}.mp4",
num_videos_per_class,
)
return num_videos_per_class * len(classes)
def test_transforms_v2_wrapper_spawn(self):
with self.create_dataset(output_format="TCHW") as (dataset, _):
datasets_utils.check_transforms_v2_wrapper_spawn(dataset)
class HMDB51TestCase(datasets_utils.VideoDatasetTestCase):
DATASET_CLASS = datasets.HMDB51
ADDITIONAL_CONFIGS = combinations_grid(fold=(1, 2, 3), train=(True, False))
_VIDEO_FOLDER = "videos"
_SPLITS_FOLDER = "splits"
_CLASSES = ("brush_hair", "wave")
def dataset_args(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir)
root = tmpdir / self._VIDEO_FOLDER
annotation_path = tmpdir / self._SPLITS_FOLDER
return root, annotation_path
def inject_fake_data(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir)
video_folder = tmpdir / self._VIDEO_FOLDER
os.makedirs(video_folder)
video_files = self._create_videos(video_folder)
splits_folder = tmpdir / self._SPLITS_FOLDER
os.makedirs(splits_folder)
num_examples = self._create_split_files(splits_folder, video_files, config["fold"], config["train"])
return num_examples
def _create_videos(self, root, num_examples_per_class=3):
def file_name_fn(cls, idx, clips_per_group=2):
return f"{cls}_{(idx // clips_per_group) + 1:d}_{(idx % clips_per_group) + 1:d}.avi"
return [
(
cls,
datasets_utils.create_video_folder(
root,
cls,
lambda idx: file_name_fn(cls, idx),
num_examples_per_class,
),
)
for cls in self._CLASSES
]
def _create_split_files(self, root, video_files, fold, train):
num_videos = num_train_videos = 0
for cls, videos in video_files:
num_videos += len(videos)
train_videos = set(random.sample(videos, random.randrange(1, len(videos) - 1)))
num_train_videos += len(train_videos)
with open(pathlib.Path(root) / f"{cls}_test_split{fold}.txt", "w") as fh:
fh.writelines(f"{file.name} {1 if file in train_videos else 2}\n" for file in videos)
return num_train_videos if train else (num_videos - num_train_videos)
class OmniglotTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.Omniglot
ADDITIONAL_CONFIGS = combinations_grid(background=(True, False))
def inject_fake_data(self, tmpdir, config):
target_folder = (
pathlib.Path(tmpdir) / "omniglot-py" / f"images_{'background' if config['background'] else 'evaluation'}"
)
os.makedirs(target_folder)
num_images = 0
for name in ("Alphabet_of_the_Magi", "Tifinagh"):
num_images += self._create_alphabet_folder(target_folder, name)
return num_images
def _create_alphabet_folder(self, root, name):
num_images_total = 0
for idx in range(torch.randint(1, 4, size=()).item()):
num_images = torch.randint(1, 4, size=()).item()
num_images_total += num_images
datasets_utils.create_image_folder(
root / name, f"character{idx:02d}", lambda image_idx: f"{image_idx:02d}.png", num_images
)
return num_images_total
class SBUTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.SBU
FEATURE_TYPES = (PIL.Image.Image, str)
def inject_fake_data(self, tmpdir, config):
num_images = 3
dataset_folder = pathlib.Path(tmpdir) / "dataset"
images = datasets_utils.create_image_folder(tmpdir, "dataset", self._create_file_name, num_images)
self._create_urls_txt(dataset_folder, images)
self._create_captions_txt(dataset_folder, num_images)
return num_images
def _create_file_name(self, idx):
part1 = datasets_utils.create_random_string(10, string.digits)
part2 = datasets_utils.create_random_string(10, string.ascii_lowercase, string.digits[:6])
return f"{part1}_{part2}.jpg"
def _create_urls_txt(self, root, images):
with open(root / "SBU_captioned_photo_dataset_urls.txt", "w") as fh:
for image in images:
fh.write(
f"http://static.flickr.com/{datasets_utils.create_random_string(4, string.digits)}/{image.name}\n"
)
def _create_captions_txt(self, root, num_images):
with open(root / "SBU_captioned_photo_dataset_captions.txt", "w") as fh:
for _ in range(num_images):
fh.write(f"{datasets_utils.create_random_string(10)}\n")
class SEMEIONTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.SEMEION
def inject_fake_data(self, tmpdir, config):
num_images = 3
images = torch.rand(num_images, 256)
labels = F.one_hot(torch.randint(10, size=(num_images,)))
with open(pathlib.Path(tmpdir) / "semeion.data", "w") as fh:
for image, one_hot_labels in zip(images, labels):
image_columns = " ".join([f"{pixel.item():.4f}" for pixel in image])
labels_columns = " ".join([str(label.item()) for label in one_hot_labels])
fh.write(f"{image_columns} {labels_columns}\n")
return num_images
class USPSTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.USPS
ADDITIONAL_CONFIGS = combinations_grid(train=(True, False))
def inject_fake_data(self, tmpdir, config):
num_images = 2 if config["train"] else 1
images = torch.rand(num_images, 256) * 2 - 1
labels = torch.randint(1, 11, size=(num_images,))
with bz2.open(pathlib.Path(tmpdir) / f"usps{'.t' if not config['train'] else ''}.bz2", "w") as fh:
for image, label in zip(images, labels):
line = " ".join((str(label.item()), *[f"{idx}:{pixel:.6f}" for idx, pixel in enumerate(image, 1)]))
fh.write(f"{line}\n".encode())
return num_images
class SBDatasetTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.SBDataset
FEATURE_TYPES = (PIL.Image.Image, (np.ndarray, PIL.Image.Image))
REQUIRED_PACKAGES = ("scipy.io", "scipy.sparse")
ADDITIONAL_CONFIGS = combinations_grid(
image_set=("train", "val", "train_noval"), mode=("boundaries", "segmentation")
)
_NUM_CLASSES = 20
def inject_fake_data(self, tmpdir, config):
num_images, num_images_per_image_set = self._create_split_files(tmpdir)
sizes = self._create_target_folder(tmpdir, "cls", num_images)
datasets_utils.create_image_folder(
tmpdir, "img", lambda idx: f"{self._file_stem(idx)}.jpg", num_images, size=lambda idx: sizes[idx]
)
return num_images_per_image_set[config["image_set"]]
def _create_split_files(self, root):
root = pathlib.Path(root)
splits = dict(train=(0, 1, 2), train_noval=(0, 2), val=(3,))
for split, idcs in splits.items():
self._create_split_file(root, split, idcs)
num_images = max(itertools.chain(*splits.values())) + 1
num_images_per_split = {split: len(idcs) for split, idcs in splits.items()}
return num_images, num_images_per_split
def _create_split_file(self, root, name, idcs):
with open(root / f"{name}.txt", "w") as fh:
fh.writelines(f"{self._file_stem(idx)}\n" for idx in idcs)
def _create_target_folder(self, root, name, num_images):
io = datasets_utils.lazy_importer.scipy.io
target_folder = pathlib.Path(root) / name
os.makedirs(target_folder)
sizes = [torch.randint(1, 4, size=(2,)).tolist() for _ in range(num_images)]
for idx, size in enumerate(sizes):
content = dict(
GTcls=dict(Boundaries=self._create_boundaries(size), Segmentation=self._create_segmentation(size))
)
io.savemat(target_folder / f"{self._file_stem(idx)}.mat", content)
return sizes
def _create_boundaries(self, size):
sparse = datasets_utils.lazy_importer.scipy.sparse
return [
[sparse.csc_matrix(torch.randint(0, 2, size=size, dtype=torch.uint8).numpy())]
for _ in range(self._NUM_CLASSES)
]
def _create_segmentation(self, size):
return torch.randint(0, self._NUM_CLASSES + 1, size=size, dtype=torch.uint8).numpy()
def _file_stem(self, idx):
return f"2008_{idx:06d}"
def test_transforms_v2_wrapper_spawn(self):
with self.create_dataset(mode="segmentation") as (dataset, _):
datasets_utils.check_transforms_v2_wrapper_spawn(dataset)
class FakeDataTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.FakeData
FEATURE_TYPES = (PIL.Image.Image, int)
def dataset_args(self, tmpdir, config):
return ()
def inject_fake_data(self, tmpdir, config):
return config["size"]
def test_not_found_or_corrupted(self):
self.skipTest("The data is generated at creation and thus cannot be non-existent or corrupted.")
class PhotoTourTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.PhotoTour
# The PhotoTour dataset returns examples with different features with respect to the 'train' parameter. Thus,
# we overwrite 'FEATURE_TYPES' with a dummy value to satisfy the initial checks of the base class. Furthermore, we
# overwrite the 'test_feature_types()' method to select the correct feature types before the test is run.
FEATURE_TYPES = ()
_TRAIN_FEATURE_TYPES = (torch.Tensor,)
_TEST_FEATURE_TYPES = (torch.Tensor, torch.Tensor, torch.Tensor)
combinations_grid(train=(True, False))
_NAME = "liberty"
def dataset_args(self, tmpdir, config):
return tmpdir, self._NAME
def inject_fake_data(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir)
# In contrast to the original data, the fake images injected here comprise only a single patch. Thus,
# num_images == num_patches.
num_patches = 5
image_files = self._create_images(tmpdir, self._NAME, num_patches)
point_ids, info_file = self._create_info_file(tmpdir / self._NAME, num_patches)
num_matches, matches_file = self._create_matches_file(tmpdir / self._NAME, num_patches, point_ids)
self._create_archive(tmpdir, self._NAME, *image_files, info_file, matches_file)
return num_patches if config["train"] else num_matches
def _create_images(self, root, name, num_images):
# The images in the PhotoTour dataset comprises of multiple grayscale patches of 64 x 64 pixels. Thus, the
# smallest fake image is 64 x 64 pixels and comprises a single patch.
return datasets_utils.create_image_folder(
root, name, lambda idx: f"patches{idx:04d}.bmp", num_images, size=(1, 64, 64)
)
def _create_info_file(self, root, num_images):
point_ids = torch.randint(num_images, size=(num_images,)).tolist()
file = root / "info.txt"
with open(file, "w") as fh:
fh.writelines([f"{point_id} 0\n" for point_id in point_ids])
return point_ids, file
def _create_matches_file(self, root, num_patches, point_ids):
lines = [
f"{patch_id1} {point_ids[patch_id1]} 0 {patch_id2} {point_ids[patch_id2]} 0\n"
for patch_id1, patch_id2 in itertools.combinations(range(num_patches), 2)
]
file = root / "m50_100000_100000_0.txt"
with open(file, "w") as fh:
fh.writelines(lines)
return len(lines), file
def _create_archive(self, root, name, *files):
archive = root / f"{name}.zip"
with zipfile.ZipFile(archive, "w") as zip:
for file in files:
zip.write(file, arcname=file.relative_to(root))
return archive
@datasets_utils.test_all_configs
def test_feature_types(self, config):
feature_types = self.FEATURE_TYPES
self.FEATURE_TYPES = self._TRAIN_FEATURE_TYPES if config["train"] else self._TEST_FEATURE_TYPES
try:
super().test_feature_types.__wrapped__(self, config)
finally:
self.FEATURE_TYPES = feature_types
class Flickr8kTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.Flickr8k
FEATURE_TYPES = (PIL.Image.Image, list)
_IMAGES_FOLDER = "images"
_ANNOTATIONS_FILE = "captions.html"
def dataset_args(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir)
root = tmpdir / self._IMAGES_FOLDER
ann_file = tmpdir / self._ANNOTATIONS_FILE
return str(root), str(ann_file)
def inject_fake_data(self, tmpdir, config):
num_images = 3
num_captions_per_image = 3
tmpdir = pathlib.Path(tmpdir)
images = self._create_images(tmpdir, self._IMAGES_FOLDER, num_images)
self._create_annotations_file(tmpdir, self._ANNOTATIONS_FILE, images, num_captions_per_image)
return dict(num_examples=num_images, captions=self._create_captions(num_captions_per_image))
def _create_images(self, root, name, num_images):
return datasets_utils.create_image_folder(root, name, self._image_file_name, num_images)
def _image_file_name(self, idx):
id = datasets_utils.create_random_string(10, string.digits)
checksum = datasets_utils.create_random_string(10, string.digits, string.ascii_lowercase[:6])
size = datasets_utils.create_random_string(1, "qwcko")
return f"{id}_{checksum}_{size}.jpg"
def _create_annotations_file(self, root, name, images, num_captions_per_image):
with open(root / name, "w") as fh:
fh.write("
")
for image in (None, *images):
self._add_image(fh, image, num_captions_per_image)
fh.write("
")
def _add_image(self, fh, image, num_captions_per_image):
fh.write("")
self._add_image_header(fh, image)
fh.write("
")
self._add_image_captions(fh, num_captions_per_image)
fh.write(" |
")
def _add_image_header(self, fh, image=None):
if image:
url = f"http://www.flickr.com/photos/user/{image.name.split('_')[0]}/"
data = f'{url}'
else:
data = "Image Not Found"
fh.write(f"{data} | ")
def _add_image_captions(self, fh, num_captions_per_image):
for caption in self._create_captions(num_captions_per_image):
fh.write(f"{caption}")
def _create_captions(self, num_captions_per_image):
return [str(idx) for idx in range(num_captions_per_image)]
def test_captions(self):
with self.create_dataset() as (dataset, info):
_, captions = dataset[0]
assert len(captions) == len(info["captions"])
assert all([a == b for a, b in zip(captions, info["captions"])])
class Flickr30kTestCase(Flickr8kTestCase):
DATASET_CLASS = datasets.Flickr30k
FEATURE_TYPES = (PIL.Image.Image, list)
_ANNOTATIONS_FILE = "captions.token"
def _image_file_name(self, idx):
return f"{idx}.jpg"
def _create_annotations_file(self, root, name, images, num_captions_per_image):
with open(root / name, "w") as fh:
for image, (idx, caption) in itertools.product(
images, enumerate(self._create_captions(num_captions_per_image))
):
fh.write(f"{image.name}#{idx}\t{caption}\n")
class MNISTTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.MNIST
ADDITIONAL_CONFIGS = combinations_grid(train=(True, False))
_MAGIC_DTYPES = {
torch.uint8: 8,
torch.int8: 9,
torch.int16: 11,
torch.int32: 12,
torch.float32: 13,
torch.float64: 14,
}
_IMAGES_SIZE = (28, 28)
_IMAGES_DTYPE = torch.uint8
_LABELS_SIZE = ()
_LABELS_DTYPE = torch.uint8
def inject_fake_data(self, tmpdir, config):
raw_dir = pathlib.Path(tmpdir) / self.DATASET_CLASS.__name__ / "raw"
os.makedirs(raw_dir, exist_ok=True)
num_images = self._num_images(config)
self._create_binary_file(
raw_dir, self._images_file(config), (num_images, *self._IMAGES_SIZE), self._IMAGES_DTYPE
)
self._create_binary_file(
raw_dir, self._labels_file(config), (num_images, *self._LABELS_SIZE), self._LABELS_DTYPE
)
return num_images
def _num_images(self, config):
return 2 if config["train"] else 1
def _images_file(self, config):
return f"{self._prefix(config)}-images-idx3-ubyte"
def _labels_file(self, config):
return f"{self._prefix(config)}-labels-idx1-ubyte"
def _prefix(self, config):
return "train" if config["train"] else "t10k"
def _create_binary_file(self, root, filename, size, dtype):
with open(pathlib.Path(root) / filename, "wb") as fh:
for meta in (self._magic(dtype, len(size)), *size):
fh.write(self._encode(meta))
# If ever an MNIST variant is added that uses floating point data, this should be adapted.
data = torch.randint(0, torch.iinfo(dtype).max + 1, size, dtype=dtype)
fh.write(data.numpy().tobytes())
def _magic(self, dtype, dims):
return self._MAGIC_DTYPES[dtype] * 256 + dims
def _encode(self, v):
return torch.tensor(v, dtype=torch.int32).numpy().tobytes()[::-1]
class FashionMNISTTestCase(MNISTTestCase):
DATASET_CLASS = datasets.FashionMNIST
class KMNISTTestCase(MNISTTestCase):
DATASET_CLASS = datasets.KMNIST
class EMNISTTestCase(MNISTTestCase):
DATASET_CLASS = datasets.EMNIST
DEFAULT_CONFIG = dict(split="byclass")
ADDITIONAL_CONFIGS = combinations_grid(
split=("byclass", "bymerge", "balanced", "letters", "digits", "mnist"), train=(True, False)
)
def _prefix(self, config):
return f"emnist-{config['split']}-{'train' if config['train'] else 'test'}"
class QMNISTTestCase(MNISTTestCase):
DATASET_CLASS = datasets.QMNIST
ADDITIONAL_CONFIGS = combinations_grid(what=("train", "test", "test10k", "nist"))
_LABELS_SIZE = (8,)
_LABELS_DTYPE = torch.int32
def _num_images(self, config):
if config["what"] == "nist":
return 3
elif config["what"] == "train":
return 2
elif config["what"] == "test50k":
# The split 'test50k' is defined as the last 50k images beginning at index 10000. Thus, we need to create
# more than 10000 images for the dataset to not be empty. Since this takes significantly longer than the
# creation of all other splits, this is excluded from the 'ADDITIONAL_CONFIGS' and is tested only once in
# 'test_num_examples_test50k'.
return 10001
else:
return 1
def _labels_file(self, config):
return f"{self._prefix(config)}-labels-idx2-int"
def _prefix(self, config):
if config["what"] == "nist":
return "xnist"
if config["what"] is None:
what = "train" if config["train"] else "test"
elif config["what"].startswith("test"):
what = "test"
else:
what = config["what"]
return f"qmnist-{what}"
def test_num_examples_test50k(self):
with self.create_dataset(what="test50k") as (dataset, info):
# Since the split 'test50k' selects all images beginning from the index 10000, we subtract the number of
# created examples by this.
assert len(dataset) == info["num_examples"] - 10000
class MovingMNISTTestCase(datasets_utils.DatasetTestCase):
DATASET_CLASS = datasets.MovingMNIST
FEATURE_TYPES = (torch.Tensor,)
ADDITIONAL_CONFIGS = combinations_grid(split=(None, "train", "test"), split_ratio=(10, 1, 19))
_NUM_FRAMES = 20
def inject_fake_data(self, tmpdir, config):
base_folder = os.path.join(tmpdir, self.DATASET_CLASS.__name__)
os.makedirs(base_folder, exist_ok=True)
num_samples = 5
data = np.concatenate(
[
np.zeros((config["split_ratio"], num_samples, 64, 64)),
np.ones((self._NUM_FRAMES - config["split_ratio"], num_samples, 64, 64)),
]
)
np.save(os.path.join(base_folder, "mnist_test_seq.npy"), data)
return num_samples
@datasets_utils.test_all_configs
def test_split(self, config):
with self.create_dataset(config) as (dataset, _):
if config["split"] == "train":
assert (dataset.data == 0).all()
elif config["split"] == "test":
assert (dataset.data == 1).all()
else:
assert dataset.data.size()[1] == self._NUM_FRAMES
class DatasetFolderTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.DatasetFolder
_EXTENSIONS = ("jpg", "png")
# DatasetFolder has two mutually exclusive parameters: 'extensions' and 'is_valid_file'. One of both is required.
# We only iterate over different 'extensions' here and handle the tests for 'is_valid_file' in the
# 'test_is_valid_file()' method.
DEFAULT_CONFIG = dict(extensions=_EXTENSIONS)
ADDITIONAL_CONFIGS = combinations_grid(extensions=[(ext,) for ext in _EXTENSIONS])
def dataset_args(self, tmpdir, config):
return tmpdir, datasets.folder.pil_loader
def inject_fake_data(self, tmpdir, config):
extensions = config["extensions"] or self._is_valid_file_to_extensions(config["is_valid_file"])
num_examples_total = 0
classes = []
for ext, cls in zip(self._EXTENSIONS, string.ascii_letters):
if ext not in extensions:
continue
num_examples = torch.randint(1, 3, size=()).item()
datasets_utils.create_image_folder(tmpdir, cls, lambda idx: self._file_name_fn(cls, ext, idx), num_examples)
num_examples_total += num_examples
classes.append(cls)
return dict(num_examples=num_examples_total, classes=classes)
def _file_name_fn(self, cls, ext, idx):
return f"{cls}_{idx}.{ext}"
def _is_valid_file_to_extensions(self, is_valid_file):
return {ext for ext in self._EXTENSIONS if is_valid_file(f"foo.{ext}")}
@datasets_utils.test_all_configs
def test_is_valid_file(self, config):
extensions = config.pop("extensions")
# We need to explicitly pass extensions=None here or otherwise it would be filled by the value from the
# DEFAULT_CONFIG.
with self.create_dataset(
config, extensions=None, is_valid_file=lambda file: pathlib.Path(file).suffix[1:] in extensions
) as (dataset, info):
assert len(dataset) == info["num_examples"]
@datasets_utils.test_all_configs
def test_classes(self, config):
with self.create_dataset(config) as (dataset, info):
assert len(dataset.classes) == len(info["classes"])
assert all([a == b for a, b in zip(dataset.classes, info["classes"])])
class ImageFolderTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.ImageFolder
def inject_fake_data(self, tmpdir, config):
num_examples_total = 0
classes = ("a", "b")
for cls in classes:
num_examples = torch.randint(1, 3, size=()).item()
num_examples_total += num_examples
datasets_utils.create_image_folder(tmpdir, cls, lambda idx: f"{cls}_{idx}.png", num_examples)
return dict(num_examples=num_examples_total, classes=classes)
@datasets_utils.test_all_configs
def test_classes(self, config):
with self.create_dataset(config) as (dataset, info):
assert len(dataset.classes) == len(info["classes"])
assert all([a == b for a, b in zip(dataset.classes, info["classes"])])
class KittiTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.Kitti
FEATURE_TYPES = (PIL.Image.Image, (list, type(None))) # test split returns None as target
ADDITIONAL_CONFIGS = combinations_grid(train=(True, False))
def inject_fake_data(self, tmpdir, config):
kitti_dir = os.path.join(tmpdir, "Kitti", "raw")
os.makedirs(kitti_dir)
split_to_num_examples = {
True: 1,
False: 2,
}
# We need to create all folders(training and testing).
for is_training in (True, False):
num_examples = split_to_num_examples[is_training]
datasets_utils.create_image_folder(
root=kitti_dir,
name=os.path.join("training" if is_training else "testing", "image_2"),
file_name_fn=lambda image_idx: f"{image_idx:06d}.png",
num_examples=num_examples,
)
if is_training:
for image_idx in range(num_examples):
target_file_dir = os.path.join(kitti_dir, "training", "label_2")
os.makedirs(target_file_dir)
target_file_name = os.path.join(target_file_dir, f"{image_idx:06d}.txt")
target_contents = "Pedestrian 0.00 0 -0.20 712.40 143.00 810.73 307.92 1.89 0.48 1.20 1.84 1.47 8.41 0.01\n" # noqa
with open(target_file_name, "w") as target_file:
target_file.write(target_contents)
return split_to_num_examples[config["train"]]
def test_transforms_v2_wrapper_spawn(self):
with self.create_dataset() as (dataset, _):
datasets_utils.check_transforms_v2_wrapper_spawn(dataset)
class SvhnTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.SVHN
REQUIRED_PACKAGES = ("scipy",)
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "test", "extra"))
def inject_fake_data(self, tmpdir, config):
import scipy.io as sio
split = config["split"]
num_examples = {
"train": 2,
"test": 3,
"extra": 4,
}.get(split)
file = f"{split}_32x32.mat"
images = np.zeros((32, 32, 3, num_examples), dtype=np.uint8)
targets = np.zeros((num_examples,), dtype=np.uint8)
sio.savemat(os.path.join(tmpdir, file), {"X": images, "y": targets})
return num_examples
class Places365TestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.Places365
ADDITIONAL_CONFIGS = combinations_grid(
split=("train-standard", "train-challenge", "val"),
small=(False, True),
)
_CATEGORIES = "categories_places365.txt"
# {split: file}
_FILE_LISTS = {
"train-standard": "places365_train_standard.txt",
"train-challenge": "places365_train_challenge.txt",
"val": "places365_val.txt",
}
# {(split, small): folder_name}
_IMAGES = {
("train-standard", False): "data_large_standard",
("train-challenge", False): "data_large_challenge",
("val", False): "val_large",
("train-standard", True): "data_256_standard",
("train-challenge", True): "data_256_challenge",
("val", True): "val_256",
}
# (class, idx)
_CATEGORIES_CONTENT = (
("/a/airfield", 0),
("/a/apartment_building/outdoor", 8),
("/b/badlands", 30),
)
# (file, idx)
_FILE_LIST_CONTENT = (
("Places365_val_00000001.png", 0),
*((f"{category}/Places365_train_00000001.png", idx) for category, idx in _CATEGORIES_CONTENT),
)
@staticmethod
def _make_txt(root, name, seq):
file = os.path.join(root, name)
with open(file, "w") as fh:
for text, idx in seq:
fh.write(f"{text} {idx}\n")
@staticmethod
def _make_categories_txt(root, name):
Places365TestCase._make_txt(root, name, Places365TestCase._CATEGORIES_CONTENT)
@staticmethod
def _make_file_list_txt(root, name):
Places365TestCase._make_txt(root, name, Places365TestCase._FILE_LIST_CONTENT)
@staticmethod
def _make_image(file_name, size):
os.makedirs(os.path.dirname(file_name), exist_ok=True)
PIL.Image.fromarray(np.zeros((*size, 3), dtype=np.uint8)).save(file_name)
@staticmethod
def _make_devkit_archive(root, split):
Places365TestCase._make_categories_txt(root, Places365TestCase._CATEGORIES)
Places365TestCase._make_file_list_txt(root, Places365TestCase._FILE_LISTS[split])
@staticmethod
def _make_images_archive(root, split, small):
folder_name = Places365TestCase._IMAGES[(split, small)]
image_size = (256, 256) if small else (512, random.randint(512, 1024))
files, idcs = zip(*Places365TestCase._FILE_LIST_CONTENT)
images = [f.lstrip("/").replace("/", os.sep) for f in files]
for image in images:
Places365TestCase._make_image(os.path.join(root, folder_name, image), image_size)
return [(os.path.join(root, folder_name, image), idx) for image, idx in zip(images, idcs)]
def inject_fake_data(self, tmpdir, config):
self._make_devkit_archive(tmpdir, config["split"])
return len(self._make_images_archive(tmpdir, config["split"], config["small"]))
def test_classes(self):
classes = list(map(lambda x: x[0], self._CATEGORIES_CONTENT))
with self.create_dataset() as (dataset, _):
assert dataset.classes == classes
def test_class_to_idx(self):
class_to_idx = dict(self._CATEGORIES_CONTENT)
with self.create_dataset() as (dataset, _):
assert dataset.class_to_idx == class_to_idx
def test_images_download_preexisting(self):
with pytest.raises(RuntimeError):
with self.create_dataset({"download": True}):
pass
class INaturalistTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.INaturalist
FEATURE_TYPES = (PIL.Image.Image, (int, tuple))
ADDITIONAL_CONFIGS = combinations_grid(
target_type=("kingdom", "full", "genus", ["kingdom", "phylum", "class", "order", "family", "genus", "full"]),
version=("2021_train",),
)
def inject_fake_data(self, tmpdir, config):
categories = [
"00000_Akingdom_0phylum_Aclass_Aorder_Afamily_Agenus_Aspecies",
"00001_Akingdom_1phylum_Aclass_Border_Afamily_Bgenus_Aspecies",
"00002_Akingdom_2phylum_Cclass_Corder_Cfamily_Cgenus_Cspecies",
]
num_images_per_category = 3
for category in categories:
datasets_utils.create_image_folder(
root=os.path.join(tmpdir, config["version"]),
name=category,
file_name_fn=lambda idx: f"image_{idx + 1:04d}.jpg",
num_examples=num_images_per_category,
)
return num_images_per_category * len(categories)
def test_targets(self):
target_types = ["kingdom", "phylum", "class", "order", "family", "genus", "full"]
with self.create_dataset(target_type=target_types, version="2021_valid") as (dataset, _):
items = [d[1] for d in dataset]
for i, item in enumerate(items):
assert dataset.category_name("kingdom", item[0]) == "Akingdom"
assert dataset.category_name("phylum", item[1]) == f"{i // 3}phylum"
assert item[6] == i // 3
class LFWPeopleTestCase(datasets_utils.DatasetTestCase):
DATASET_CLASS = datasets.LFWPeople
FEATURE_TYPES = (PIL.Image.Image, int)
ADDITIONAL_CONFIGS = combinations_grid(
split=("10fold", "train", "test"), image_set=("original", "funneled", "deepfunneled")
)
_IMAGES_DIR = {"original": "lfw", "funneled": "lfw_funneled", "deepfunneled": "lfw-deepfunneled"}
_file_id = {"10fold": "", "train": "DevTrain", "test": "DevTest"}
def inject_fake_data(self, tmpdir, config):
tmpdir = pathlib.Path(tmpdir) / "lfw-py"
os.makedirs(tmpdir, exist_ok=True)
return dict(
num_examples=self._create_images_dir(tmpdir, self._IMAGES_DIR[config["image_set"]], config["split"]),
split=config["split"],
)
def _create_images_dir(self, root, idir, split):
idir = os.path.join(root, idir)
os.makedirs(idir, exist_ok=True)
n, flines = (10, ["10\n"]) if split == "10fold" else (1, [])
num_examples = 0
names = []
for _ in range(n):
num_people = random.randint(2, 5)
flines.append(f"{num_people}\n")
for i in range(num_people):
name = self._create_random_id()
no = random.randint(1, 10)
flines.append(f"{name}\t{no}\n")
names.append(f"{name}\t{no}\n")
datasets_utils.create_image_folder(idir, name, lambda n: f"{name}_{n+1:04d}.jpg", no, 250)
num_examples += no
with open(pathlib.Path(root) / f"people{self._file_id[split]}.txt", "w") as f:
f.writelines(flines)
with open(pathlib.Path(root) / "lfw-names.txt", "w") as f:
f.writelines(sorted(names))
return num_examples
def _create_random_id(self):
part1 = datasets_utils.create_random_string(random.randint(5, 7))
part2 = datasets_utils.create_random_string(random.randint(4, 7))
return f"{part1}_{part2}"
class LFWPairsTestCase(LFWPeopleTestCase):
DATASET_CLASS = datasets.LFWPairs
FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, int)
def _create_images_dir(self, root, idir, split):
idir = os.path.join(root, idir)
os.makedirs(idir, exist_ok=True)
num_pairs = 7 # effectively 7*2*n = 14*n
n, self.flines = (10, [f"10\t{num_pairs}"]) if split == "10fold" else (1, [str(num_pairs)])
for _ in range(n):
self._inject_pairs(idir, num_pairs, True)
self._inject_pairs(idir, num_pairs, False)
with open(pathlib.Path(root) / f"pairs{self._file_id[split]}.txt", "w") as f:
f.writelines(self.flines)
return num_pairs * 2 * n
def _inject_pairs(self, root, num_pairs, same):
for i in range(num_pairs):
name1 = self._create_random_id()
name2 = name1 if same else self._create_random_id()
no1, no2 = random.randint(1, 100), random.randint(1, 100)
if same:
self.flines.append(f"\n{name1}\t{no1}\t{no2}")
else:
self.flines.append(f"\n{name1}\t{no1}\t{name2}\t{no2}")
datasets_utils.create_image_folder(root, name1, lambda _: f"{name1}_{no1:04d}.jpg", 1, 250)
datasets_utils.create_image_folder(root, name2, lambda _: f"{name2}_{no2:04d}.jpg", 1, 250)
class SintelTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.Sintel
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "test"), pass_name=("clean", "final", "both"))
FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, (np.ndarray, type(None)))
FLOW_H, FLOW_W = 3, 4
def inject_fake_data(self, tmpdir, config):
root = pathlib.Path(tmpdir) / "Sintel"
num_images_per_scene = 3 if config["split"] == "train" else 4
num_scenes = 2
for split_dir in ("training", "test"):
for pass_name in ("clean", "final"):
image_root = root / split_dir / pass_name
for scene_id in range(num_scenes):
scene_dir = image_root / f"scene_{scene_id}"
datasets_utils.create_image_folder(
image_root,
name=str(scene_dir),
file_name_fn=lambda image_idx: f"frame_000{image_idx}.png",
num_examples=num_images_per_scene,
)
flow_root = root / "training" / "flow"
for scene_id in range(num_scenes):
scene_dir = flow_root / f"scene_{scene_id}"
os.makedirs(scene_dir)
for i in range(num_images_per_scene - 1):
file_name = str(scene_dir / f"frame_000{i}.flo")
datasets_utils.make_fake_flo_file(h=self.FLOW_H, w=self.FLOW_W, file_name=file_name)
# with e.g. num_images_per_scene = 3, for a single scene with have 3 images
# which are frame_0000, frame_0001 and frame_0002
# They will be consecutively paired as (frame_0000, frame_0001), (frame_0001, frame_0002),
# that is 3 - 1 = 2 examples. Hence the formula below
num_passes = 2 if config["pass_name"] == "both" else 1
num_examples = (num_images_per_scene - 1) * num_scenes * num_passes
return num_examples
def test_flow(self):
# Make sure flow exists for train split, and make sure there are as many flow values as (pairs of) images
h, w = self.FLOW_H, self.FLOW_W
expected_flow = np.arange(2 * h * w).reshape(h, w, 2).transpose(2, 0, 1)
with self.create_dataset(split="train") as (dataset, _):
assert dataset._flow_list and len(dataset._flow_list) == len(dataset._image_list)
for _, _, flow in dataset:
assert flow.shape == (2, h, w)
np.testing.assert_allclose(flow, expected_flow)
# Make sure flow is always None for test split
with self.create_dataset(split="test") as (dataset, _):
assert dataset._image_list and not dataset._flow_list
for _, _, flow in dataset:
assert flow is None
def test_bad_input(self):
with pytest.raises(ValueError, match="Unknown value 'bad' for argument split"):
with self.create_dataset(split="bad"):
pass
with pytest.raises(ValueError, match="Unknown value 'bad' for argument pass_name"):
with self.create_dataset(pass_name="bad"):
pass
class KittiFlowTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.KittiFlow
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "test"))
FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, (np.ndarray, type(None)), (np.ndarray, type(None)))
def inject_fake_data(self, tmpdir, config):
root = pathlib.Path(tmpdir) / "KittiFlow"
num_examples = 2 if config["split"] == "train" else 3
for split_dir in ("training", "testing"):
datasets_utils.create_image_folder(
root / split_dir,
name="image_2",
file_name_fn=lambda image_idx: f"{image_idx}_10.png",
num_examples=num_examples,
)
datasets_utils.create_image_folder(
root / split_dir,
name="image_2",
file_name_fn=lambda image_idx: f"{image_idx}_11.png",
num_examples=num_examples,
)
# For kitti the ground truth flows are encoded as 16-bits pngs.
# create_image_folder() will actually create 8-bits pngs, but it doesn't
# matter much: the flow reader will still be able to read the files, it
# will just be garbage flow value - but we don't care about that here.
datasets_utils.create_image_folder(
root / "training",
name="flow_occ",
file_name_fn=lambda image_idx: f"{image_idx}_10.png",
num_examples=num_examples,
)
return num_examples
def test_flow_and_valid(self):
# Make sure flow exists for train split, and make sure there are as many flow values as (pairs of) images
# Also assert flow and valid are of the expected shape
with self.create_dataset(split="train") as (dataset, _):
assert dataset._flow_list and len(dataset._flow_list) == len(dataset._image_list)
for _, _, flow, valid in dataset:
two, h, w = flow.shape
assert two == 2
assert valid.shape == (h, w)
# Make sure flow and valid are always None for test split
with self.create_dataset(split="test") as (dataset, _):
assert dataset._image_list and not dataset._flow_list
for _, _, flow, valid in dataset:
assert flow is None
assert valid is None
def test_bad_input(self):
with pytest.raises(ValueError, match="Unknown value 'bad' for argument split"):
with self.create_dataset(split="bad"):
pass
class FlyingChairsTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.FlyingChairs
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "val"))
FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, (np.ndarray, type(None)))
FLOW_H, FLOW_W = 3, 4
def _make_split_file(self, root, num_examples):
# We create a fake split file here, but users are asked to download the real one from the authors website
split_ids = [1] * num_examples["train"] + [2] * num_examples["val"]
random.shuffle(split_ids)
with open(str(root / "FlyingChairs_train_val.txt"), "w+") as split_file:
for split_id in split_ids:
split_file.write(f"{split_id}\n")
def inject_fake_data(self, tmpdir, config):
root = pathlib.Path(tmpdir) / "FlyingChairs"
num_examples = {"train": 5, "val": 3}
num_examples_total = sum(num_examples.values())
datasets_utils.create_image_folder( # img1
root,
name="data",
file_name_fn=lambda image_idx: f"00{image_idx}_img1.ppm",
num_examples=num_examples_total,
)
datasets_utils.create_image_folder( # img2
root,
name="data",
file_name_fn=lambda image_idx: f"00{image_idx}_img2.ppm",
num_examples=num_examples_total,
)
for i in range(num_examples_total):
file_name = str(root / "data" / f"00{i}_flow.flo")
datasets_utils.make_fake_flo_file(h=self.FLOW_H, w=self.FLOW_W, file_name=file_name)
self._make_split_file(root, num_examples)
return num_examples[config["split"]]
@datasets_utils.test_all_configs
def test_flow(self, config):
# Make sure flow always exists, and make sure there are as many flow values as (pairs of) images
# Also make sure the flow is properly decoded
h, w = self.FLOW_H, self.FLOW_W
expected_flow = np.arange(2 * h * w).reshape(h, w, 2).transpose(2, 0, 1)
with self.create_dataset(config=config) as (dataset, _):
assert dataset._flow_list and len(dataset._flow_list) == len(dataset._image_list)
for _, _, flow in dataset:
assert flow.shape == (2, h, w)
np.testing.assert_allclose(flow, expected_flow)
class FlyingThings3DTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.FlyingThings3D
ADDITIONAL_CONFIGS = combinations_grid(
split=("train", "test"), pass_name=("clean", "final", "both"), camera=("left", "right", "both")
)
FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, (np.ndarray, type(None)))
FLOW_H, FLOW_W = 3, 4
def inject_fake_data(self, tmpdir, config):
root = pathlib.Path(tmpdir) / "FlyingThings3D"
num_images_per_camera = 3 if config["split"] == "train" else 4
passes = ("frames_cleanpass", "frames_finalpass")
splits = ("TRAIN", "TEST")
letters = ("A", "B", "C")
subfolders = ("0000", "0001")
cameras = ("left", "right")
for pass_name, split, letter, subfolder, camera in itertools.product(
passes, splits, letters, subfolders, cameras
):
current_folder = root / pass_name / split / letter / subfolder
datasets_utils.create_image_folder(
current_folder,
name=camera,
file_name_fn=lambda image_idx: f"00{image_idx}.png",
num_examples=num_images_per_camera,
)
directions = ("into_future", "into_past")
for split, letter, subfolder, direction, camera in itertools.product(
splits, letters, subfolders, directions, cameras
):
current_folder = root / "optical_flow" / split / letter / subfolder / direction / camera
os.makedirs(str(current_folder), exist_ok=True)
for i in range(num_images_per_camera):
datasets_utils.make_fake_pfm_file(self.FLOW_H, self.FLOW_W, file_name=str(current_folder / f"{i}.pfm"))
num_cameras = 2 if config["camera"] == "both" else 1
num_passes = 2 if config["pass_name"] == "both" else 1
num_examples = (
(num_images_per_camera - 1) * num_cameras * len(subfolders) * len(letters) * len(splits) * num_passes
)
return num_examples
@datasets_utils.test_all_configs
def test_flow(self, config):
h, w = self.FLOW_H, self.FLOW_W
expected_flow = np.arange(3 * h * w).reshape(h, w, 3).transpose(2, 0, 1)
expected_flow = np.flip(expected_flow, axis=1)
expected_flow = expected_flow[:2, :, :]
with self.create_dataset(config=config) as (dataset, _):
assert dataset._flow_list and len(dataset._flow_list) == len(dataset._image_list)
for _, _, flow in dataset:
assert flow.shape == (2, self.FLOW_H, self.FLOW_W)
np.testing.assert_allclose(flow, expected_flow)
def test_bad_input(self):
with pytest.raises(ValueError, match="Unknown value 'bad' for argument split"):
with self.create_dataset(split="bad"):
pass
with pytest.raises(ValueError, match="Unknown value 'bad' for argument pass_name"):
with self.create_dataset(pass_name="bad"):
pass
with pytest.raises(ValueError, match="Unknown value 'bad' for argument camera"):
with self.create_dataset(camera="bad"):
pass
class HD1KTestCase(KittiFlowTestCase):
DATASET_CLASS = datasets.HD1K
def inject_fake_data(self, tmpdir, config):
root = pathlib.Path(tmpdir) / "hd1k"
num_sequences = 4 if config["split"] == "train" else 3
num_examples_per_train_sequence = 3
for seq_idx in range(num_sequences):
# Training data
datasets_utils.create_image_folder(
root / "hd1k_input",
name="image_2",
file_name_fn=lambda image_idx: f"{seq_idx:06d}_{image_idx}.png",
num_examples=num_examples_per_train_sequence,
)
datasets_utils.create_image_folder(
root / "hd1k_flow_gt",
name="flow_occ",
file_name_fn=lambda image_idx: f"{seq_idx:06d}_{image_idx}.png",
num_examples=num_examples_per_train_sequence,
)
# Test data
datasets_utils.create_image_folder(
root / "hd1k_challenge",
name="image_2",
file_name_fn=lambda _: f"{seq_idx:06d}_10.png",
num_examples=1,
)
datasets_utils.create_image_folder(
root / "hd1k_challenge",
name="image_2",
file_name_fn=lambda _: f"{seq_idx:06d}_11.png",
num_examples=1,
)
num_examples_per_sequence = num_examples_per_train_sequence if config["split"] == "train" else 2
return num_sequences * (num_examples_per_sequence - 1)
class EuroSATTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.EuroSAT
FEATURE_TYPES = (PIL.Image.Image, int)
def inject_fake_data(self, tmpdir, config):
data_folder = os.path.join(tmpdir, "eurosat", "2750")
os.makedirs(data_folder)
num_examples_per_class = 3
classes = ("AnnualCrop", "Forest")
for cls in classes:
datasets_utils.create_image_folder(
root=data_folder,
name=cls,
file_name_fn=lambda idx: f"{cls}_{idx}.jpg",
num_examples=num_examples_per_class,
)
return len(classes) * num_examples_per_class
class Food101TestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.Food101
FEATURE_TYPES = (PIL.Image.Image, int)
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "test"))
def inject_fake_data(self, tmpdir: str, config):
root_folder = pathlib.Path(tmpdir) / "food-101"
image_folder = root_folder / "images"
meta_folder = root_folder / "meta"
image_folder.mkdir(parents=True)
meta_folder.mkdir()
num_images_per_class = 5
metadata = {}
n_samples_per_class = 3 if config["split"] == "train" else 2
sampled_classes = ("apple_pie", "crab_cakes", "gyoza")
for cls in sampled_classes:
im_fnames = datasets_utils.create_image_folder(
image_folder,
cls,
file_name_fn=lambda idx: f"{idx}.jpg",
num_examples=num_images_per_class,
)
metadata[cls] = [
"/".join(fname.relative_to(image_folder).with_suffix("").parts)
for fname in random.choices(im_fnames, k=n_samples_per_class)
]
with open(meta_folder / f"{config['split']}.json", "w") as file:
file.write(json.dumps(metadata))
return len(sampled_classes * n_samples_per_class)
class FGVCAircraftTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.FGVCAircraft
ADDITIONAL_CONFIGS = combinations_grid(
split=("train", "val", "trainval", "test"), annotation_level=("variant", "family", "manufacturer")
)
def inject_fake_data(self, tmpdir: str, config):
split = config["split"]
annotation_level = config["annotation_level"]
annotation_level_to_file = {
"variant": "variants.txt",
"family": "families.txt",
"manufacturer": "manufacturers.txt",
}
root_folder = pathlib.Path(tmpdir) / "fgvc-aircraft-2013b"
data_folder = root_folder / "data"
classes = ["707-320", "Hawk T1", "Tornado"]
num_images_per_class = 5
datasets_utils.create_image_folder(
data_folder,
"images",
file_name_fn=lambda idx: f"{idx}.jpg",
num_examples=num_images_per_class * len(classes),
)
annotation_file = data_folder / annotation_level_to_file[annotation_level]
with open(annotation_file, "w") as file:
file.write("\n".join(classes))
num_samples_per_class = 4 if split == "trainval" else 2
images_classes = []
for i in range(len(classes)):
images_classes.extend(
[
f"{idx} {classes[i]}"
for idx in random.sample(
range(i * num_images_per_class, (i + 1) * num_images_per_class), num_samples_per_class
)
]
)
images_annotation_file = data_folder / f"images_{annotation_level}_{split}.txt"
with open(images_annotation_file, "w") as file:
file.write("\n".join(images_classes))
return len(classes * num_samples_per_class)
class SUN397TestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.SUN397
def inject_fake_data(self, tmpdir: str, config):
data_dir = pathlib.Path(tmpdir) / "SUN397"
data_dir.mkdir()
num_images_per_class = 5
sampled_classes = ("abbey", "airplane_cabin", "airport_terminal")
im_paths = []
for cls in sampled_classes:
image_folder = data_dir / cls[0]
im_paths.extend(
datasets_utils.create_image_folder(
image_folder,
image_folder / cls,
file_name_fn=lambda idx: f"sun_{idx}.jpg",
num_examples=num_images_per_class,
)
)
with open(data_dir / "ClassName.txt", "w") as file:
file.writelines("\n".join(f"/{cls[0]}/{cls}" for cls in sampled_classes))
num_samples = len(im_paths)
return num_samples
class DTDTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.DTD
FEATURE_TYPES = (PIL.Image.Image, int)
ADDITIONAL_CONFIGS = combinations_grid(
split=("train", "test", "val"),
# There is no need to test the whole matrix here, since each fold is treated exactly the same
partition=(1, 5, 10),
)
def inject_fake_data(self, tmpdir: str, config):
data_folder = pathlib.Path(tmpdir) / "dtd" / "dtd"
num_images_per_class = 3
image_folder = data_folder / "images"
image_files = []
for cls in ("banded", "marbled", "zigzagged"):
image_files.extend(
datasets_utils.create_image_folder(
image_folder,
cls,
file_name_fn=lambda idx: f"{cls}_{idx:04d}.jpg",
num_examples=num_images_per_class,
)
)
meta_folder = data_folder / "labels"
meta_folder.mkdir()
image_ids = [str(path.relative_to(path.parents[1])).replace(os.sep, "/") for path in image_files]
image_ids_in_config = random.choices(image_ids, k=len(image_files) // 2)
with open(meta_folder / f"{config['split']}{config['partition']}.txt", "w") as file:
file.write("\n".join(image_ids_in_config) + "\n")
return len(image_ids_in_config)
class FER2013TestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.FER2013
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "test"))
FEATURE_TYPES = (PIL.Image.Image, (int, type(None)))
def inject_fake_data(self, tmpdir, config):
base_folder = os.path.join(tmpdir, "fer2013")
os.makedirs(base_folder)
num_samples = 5
with open(os.path.join(base_folder, f"{config['split']}.csv"), "w", newline="") as file:
writer = csv.DictWriter(
file,
fieldnames=("emotion", "pixels") if config["split"] == "train" else ("pixels",),
quoting=csv.QUOTE_NONNUMERIC,
quotechar='"',
)
writer.writeheader()
for _ in range(num_samples):
row = dict(
pixels=" ".join(
str(pixel) for pixel in datasets_utils.create_image_or_video_tensor((48, 48)).view(-1).tolist()
)
)
if config["split"] == "train":
row["emotion"] = str(int(torch.randint(0, 7, ())))
writer.writerow(row)
return num_samples
class GTSRBTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.GTSRB
FEATURE_TYPES = (PIL.Image.Image, int)
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "test"))
def inject_fake_data(self, tmpdir: str, config):
root_folder = os.path.join(tmpdir, "gtsrb")
os.makedirs(root_folder, exist_ok=True)
# Train data
train_folder = os.path.join(root_folder, "GTSRB", "Training")
os.makedirs(train_folder, exist_ok=True)
num_examples = 3 if config["split"] == "train" else 4
classes = ("00000", "00042", "00012")
for class_idx in classes:
datasets_utils.create_image_folder(
train_folder,
name=class_idx,
file_name_fn=lambda image_idx: f"{class_idx}_{image_idx:05d}.ppm",
num_examples=num_examples,
)
total_number_of_examples = num_examples * len(classes)
# Test data
test_folder = os.path.join(root_folder, "GTSRB", "Final_Test", "Images")
os.makedirs(test_folder, exist_ok=True)
with open(os.path.join(root_folder, "GT-final_test.csv"), "w") as csv_file:
csv_file.write("Filename;Width;Height;Roi.X1;Roi.Y1;Roi.X2;Roi.Y2;ClassId\n")
for _ in range(total_number_of_examples):
image_file = datasets_utils.create_random_string(5, string.digits) + ".ppm"
datasets_utils.create_image_file(test_folder, image_file)
row = [
image_file,
torch.randint(1, 100, size=()).item(),
torch.randint(1, 100, size=()).item(),
torch.randint(1, 100, size=()).item(),
torch.randint(1, 100, size=()).item(),
torch.randint(1, 100, size=()).item(),
torch.randint(1, 100, size=()).item(),
torch.randint(0, 43, size=()).item(),
]
csv_file.write(";".join(map(str, row)) + "\n")
return total_number_of_examples
class CLEVRClassificationTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.CLEVRClassification
FEATURE_TYPES = (PIL.Image.Image, (int, type(None)))
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "val", "test"))
def inject_fake_data(self, tmpdir, config):
data_folder = pathlib.Path(tmpdir) / "clevr" / "CLEVR_v1.0"
images_folder = data_folder / "images"
image_files = datasets_utils.create_image_folder(
images_folder, config["split"], lambda idx: f"CLEVR_{config['split']}_{idx:06d}.png", num_examples=5
)
scenes_folder = data_folder / "scenes"
scenes_folder.mkdir()
if config["split"] != "test":
with open(scenes_folder / f"CLEVR_{config['split']}_scenes.json", "w") as file:
json.dump(
dict(
info=dict(),
scenes=[
dict(image_filename=image_file.name, objects=[dict()] * int(torch.randint(10, ())))
for image_file in image_files
],
),
file,
)
return len(image_files)
class OxfordIIITPetTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.OxfordIIITPet
FEATURE_TYPES = (PIL.Image.Image, (int, PIL.Image.Image, tuple, type(None)))
ADDITIONAL_CONFIGS = combinations_grid(
split=("trainval", "test"),
target_types=("category", "segmentation", ["category", "segmentation"], []),
)
def inject_fake_data(self, tmpdir, config):
base_folder = os.path.join(tmpdir, "oxford-iiit-pet")
classification_anns_meta = (
dict(cls="Abyssinian", label=0, species="cat"),
dict(cls="Keeshond", label=18, species="dog"),
dict(cls="Yorkshire Terrier", label=37, species="dog"),
)
split_and_classification_anns = [
self._meta_to_split_and_classification_ann(meta, idx)
for meta, idx in itertools.product(classification_anns_meta, (1, 2, 10))
]
image_ids, *_ = zip(*split_and_classification_anns)
image_files = datasets_utils.create_image_folder(
base_folder, "images", file_name_fn=lambda idx: f"{image_ids[idx]}.jpg", num_examples=len(image_ids)
)
anns_folder = os.path.join(base_folder, "annotations")
os.makedirs(anns_folder)
split_and_classification_anns_in_split = random.choices(split_and_classification_anns, k=len(image_ids) // 2)
with open(os.path.join(anns_folder, f"{config['split']}.txt"), "w", newline="") as file:
writer = csv.writer(file, delimiter=" ")
for split_and_classification_ann in split_and_classification_anns_in_split:
writer.writerow(split_and_classification_ann)
segmentation_files = datasets_utils.create_image_folder(
anns_folder, "trimaps", file_name_fn=lambda idx: f"{image_ids[idx]}.png", num_examples=len(image_ids)
)
# The dataset has some rogue files
for path in image_files[:2]:
path.with_suffix(".mat").touch()
for path in segmentation_files:
path.with_name(f".{path.name}").touch()
return len(split_and_classification_anns_in_split)
def _meta_to_split_and_classification_ann(self, meta, idx):
image_id = "_".join(
[
*[(str.title if meta["species"] == "cat" else str.lower)(part) for part in meta["cls"].split()],
str(idx),
]
)
class_id = str(meta["label"] + 1)
species = "1" if meta["species"] == "cat" else "2"
breed_id = "-1"
return (image_id, class_id, species, breed_id)
def test_transforms_v2_wrapper_spawn(self):
with self.create_dataset() as (dataset, _):
datasets_utils.check_transforms_v2_wrapper_spawn(dataset)
class StanfordCarsTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.StanfordCars
REQUIRED_PACKAGES = ("scipy",)
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "test"))
def inject_fake_data(self, tmpdir, config):
import scipy.io as io
from numpy.core.records import fromarrays
num_examples = {"train": 5, "test": 7}[config["split"]]
num_classes = 3
base_folder = pathlib.Path(tmpdir) / "stanford_cars"
devkit = base_folder / "devkit"
devkit.mkdir(parents=True)
if config["split"] == "train":
images_folder_name = "cars_train"
annotations_mat_path = devkit / "cars_train_annos.mat"
else:
images_folder_name = "cars_test"
annotations_mat_path = base_folder / "cars_test_annos_withlabels.mat"
datasets_utils.create_image_folder(
root=base_folder,
name=images_folder_name,
file_name_fn=lambda image_index: f"{image_index:5d}.jpg",
num_examples=num_examples,
)
classes = np.random.randint(1, num_classes + 1, num_examples, dtype=np.uint8)
fnames = [f"{i:5d}.jpg" for i in range(num_examples)]
rec_array = fromarrays(
[classes, fnames],
names=["class", "fname"],
)
io.savemat(annotations_mat_path, {"annotations": rec_array})
random_class_names = ["random_name"] * num_classes
io.savemat(devkit / "cars_meta.mat", {"class_names": random_class_names})
return num_examples
class Country211TestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.Country211
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "valid", "test"))
def inject_fake_data(self, tmpdir: str, config):
split_folder = pathlib.Path(tmpdir) / "country211" / config["split"]
split_folder.mkdir(parents=True, exist_ok=True)
num_examples = {
"train": 3,
"valid": 4,
"test": 5,
}[config["split"]]
classes = ("AD", "BS", "GR")
for cls in classes:
datasets_utils.create_image_folder(
split_folder,
name=cls,
file_name_fn=lambda idx: f"{idx}.jpg",
num_examples=num_examples,
)
return num_examples * len(classes)
class Flowers102TestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.Flowers102
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "val", "test"))
REQUIRED_PACKAGES = ("scipy",)
def inject_fake_data(self, tmpdir: str, config):
base_folder = pathlib.Path(tmpdir) / "flowers-102"
num_classes = 3
num_images_per_split = dict(train=5, val=4, test=3)
num_images_total = sum(num_images_per_split.values())
datasets_utils.create_image_folder(
base_folder,
"jpg",
file_name_fn=lambda idx: f"image_{idx + 1:05d}.jpg",
num_examples=num_images_total,
)
label_dict = dict(
labels=np.random.randint(1, num_classes + 1, size=(1, num_images_total), dtype=np.uint8),
)
datasets_utils.lazy_importer.scipy.io.savemat(str(base_folder / "imagelabels.mat"), label_dict)
setid_mat = np.arange(1, num_images_total + 1, dtype=np.uint16)
np.random.shuffle(setid_mat)
setid_dict = dict(
trnid=setid_mat[: num_images_per_split["train"]].reshape(1, -1),
valid=setid_mat[num_images_per_split["train"] : -num_images_per_split["test"]].reshape(1, -1),
tstid=setid_mat[-num_images_per_split["test"] :].reshape(1, -1),
)
datasets_utils.lazy_importer.scipy.io.savemat(str(base_folder / "setid.mat"), setid_dict)
return num_images_per_split[config["split"]]
class PCAMTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.PCAM
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "val", "test"))
REQUIRED_PACKAGES = ("h5py",)
def inject_fake_data(self, tmpdir: str, config):
base_folder = pathlib.Path(tmpdir) / "pcam"
base_folder.mkdir()
num_images = {"train": 2, "test": 3, "val": 4}[config["split"]]
images_file = datasets.PCAM._FILES[config["split"]]["images"][0]
with datasets_utils.lazy_importer.h5py.File(str(base_folder / images_file), "w") as f:
f["x"] = np.random.randint(0, 256, size=(num_images, 10, 10, 3), dtype=np.uint8)
targets_file = datasets.PCAM._FILES[config["split"]]["targets"][0]
with datasets_utils.lazy_importer.h5py.File(str(base_folder / targets_file), "w") as f:
f["y"] = np.random.randint(0, 2, size=(num_images, 1, 1, 1), dtype=np.uint8)
return num_images
class RenderedSST2TestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.RenderedSST2
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "val", "test"))
SPLIT_TO_FOLDER = {"train": "train", "val": "valid", "test": "test"}
def inject_fake_data(self, tmpdir: str, config):
root_folder = pathlib.Path(tmpdir) / "rendered-sst2"
image_folder = root_folder / self.SPLIT_TO_FOLDER[config["split"]]
num_images_per_class = {"train": 5, "test": 6, "val": 7}
sampled_classes = ["positive", "negative"]
for cls in sampled_classes:
datasets_utils.create_image_folder(
image_folder,
cls,
file_name_fn=lambda idx: f"{idx}.png",
num_examples=num_images_per_class[config["split"]],
)
return len(sampled_classes) * num_images_per_class[config["split"]]
class Kitti2012StereoTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.Kitti2012Stereo
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "test"))
FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, (np.ndarray, type(None)), (np.ndarray, type(None)))
def inject_fake_data(self, tmpdir, config):
kitti_dir = pathlib.Path(tmpdir) / "Kitti2012"
os.makedirs(kitti_dir, exist_ok=True)
split_dir = kitti_dir / (config["split"] + "ing")
os.makedirs(split_dir, exist_ok=True)
num_examples = {"train": 4, "test": 3}.get(config["split"], 0)
datasets_utils.create_image_folder(
root=split_dir,
name="colored_0",
file_name_fn=lambda i: f"{i:06d}_10.png",
num_examples=num_examples,
size=(3, 100, 200),
)
datasets_utils.create_image_folder(
root=split_dir,
name="colored_1",
file_name_fn=lambda i: f"{i:06d}_10.png",
num_examples=num_examples,
size=(3, 100, 200),
)
if config["split"] == "train":
datasets_utils.create_image_folder(
root=split_dir,
name="disp_noc",
file_name_fn=lambda i: f"{i:06d}.png",
num_examples=num_examples,
# Kitti2012 uses a single channel image for disparities
size=(1, 100, 200),
)
return num_examples
def test_train_splits(self):
for split in ["train"]:
with self.create_dataset(split=split) as (dataset, _):
for left, right, disparity, mask in dataset:
assert mask is None
datasets_utils.shape_test_for_stereo(left, right, disparity)
def test_test_split(self):
for split in ["test"]:
with self.create_dataset(split=split) as (dataset, _):
for left, right, disparity, mask in dataset:
assert mask is None
assert disparity is None
datasets_utils.shape_test_for_stereo(left, right)
def test_bad_input(self):
with pytest.raises(ValueError, match="Unknown value 'bad' for argument split"):
with self.create_dataset(split="bad"):
pass
class Kitti2015StereoTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.Kitti2015Stereo
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "test"))
FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, (np.ndarray, type(None)), (np.ndarray, type(None)))
def inject_fake_data(self, tmpdir, config):
kitti_dir = pathlib.Path(tmpdir) / "Kitti2015"
os.makedirs(kitti_dir, exist_ok=True)
split_dir = kitti_dir / (config["split"] + "ing")
os.makedirs(split_dir, exist_ok=True)
num_examples = {"train": 4, "test": 6}.get(config["split"], 0)
datasets_utils.create_image_folder(
root=split_dir,
name="image_2",
file_name_fn=lambda i: f"{i:06d}_10.png",
num_examples=num_examples,
size=(3, 100, 200),
)
datasets_utils.create_image_folder(
root=split_dir,
name="image_3",
file_name_fn=lambda i: f"{i:06d}_10.png",
num_examples=num_examples,
size=(3, 100, 200),
)
if config["split"] == "train":
datasets_utils.create_image_folder(
root=split_dir,
name="disp_occ_0",
file_name_fn=lambda i: f"{i:06d}.png",
num_examples=num_examples,
# Kitti2015 uses a single channel image for disparities
size=(1, 100, 200),
)
datasets_utils.create_image_folder(
root=split_dir,
name="disp_occ_1",
file_name_fn=lambda i: f"{i:06d}.png",
num_examples=num_examples,
# Kitti2015 uses a single channel image for disparities
size=(1, 100, 200),
)
return num_examples
def test_train_splits(self):
for split in ["train"]:
with self.create_dataset(split=split) as (dataset, _):
for left, right, disparity, mask in dataset:
assert mask is None
datasets_utils.shape_test_for_stereo(left, right, disparity)
def test_test_split(self):
for split in ["test"]:
with self.create_dataset(split=split) as (dataset, _):
for left, right, disparity, mask in dataset:
assert mask is None
assert disparity is None
datasets_utils.shape_test_for_stereo(left, right)
def test_bad_input(self):
with pytest.raises(ValueError, match="Unknown value 'bad' for argument split"):
with self.create_dataset(split="bad"):
pass
class CarlaStereoTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.CarlaStereo
FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, (np.ndarray, None))
@staticmethod
def _create_scene_folders(num_examples: int, root_dir: Union[str, pathlib.Path]):
# make the root_dir if it does not exits
os.makedirs(root_dir, exist_ok=True)
for i in range(num_examples):
scene_dir = pathlib.Path(root_dir) / f"scene_{i}"
os.makedirs(scene_dir, exist_ok=True)
# populate with left right images
datasets_utils.create_image_file(root=scene_dir, name="im0.png", size=(100, 100))
datasets_utils.create_image_file(root=scene_dir, name="im1.png", size=(100, 100))
datasets_utils.make_fake_pfm_file(100, 100, file_name=str(scene_dir / "disp0GT.pfm"))
datasets_utils.make_fake_pfm_file(100, 100, file_name=str(scene_dir / "disp1GT.pfm"))
def inject_fake_data(self, tmpdir, config):
carla_dir = pathlib.Path(tmpdir) / "carla-highres"
os.makedirs(carla_dir, exist_ok=True)
split_dir = pathlib.Path(carla_dir) / "trainingF"
os.makedirs(split_dir, exist_ok=True)
num_examples = 6
self._create_scene_folders(num_examples=num_examples, root_dir=split_dir)
return num_examples
def test_train_splits(self):
with self.create_dataset() as (dataset, _):
for left, right, disparity in dataset:
datasets_utils.shape_test_for_stereo(left, right, disparity)
class CREStereoTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.CREStereo
FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, np.ndarray, type(None))
def inject_fake_data(self, tmpdir, config):
crestereo_dir = pathlib.Path(tmpdir) / "CREStereo"
os.makedirs(crestereo_dir, exist_ok=True)
examples = {"tree": 2, "shapenet": 3, "reflective": 6, "hole": 5}
for category_name in ["shapenet", "reflective", "tree", "hole"]:
split_dir = crestereo_dir / category_name
os.makedirs(split_dir, exist_ok=True)
num_examples = examples[category_name]
for idx in range(num_examples):
datasets_utils.create_image_file(root=split_dir, name=f"{idx}_left.jpg", size=(100, 100))
datasets_utils.create_image_file(root=split_dir, name=f"{idx}_right.jpg", size=(100, 100))
# these are going to end up being gray scale images
datasets_utils.create_image_file(root=split_dir, name=f"{idx}_left.disp.png", size=(1, 100, 100))
datasets_utils.create_image_file(root=split_dir, name=f"{idx}_right.disp.png", size=(1, 100, 100))
return sum(examples.values())
def test_splits(self):
with self.create_dataset() as (dataset, _):
for left, right, disparity, mask in dataset:
assert mask is None
datasets_utils.shape_test_for_stereo(left, right, disparity)
class FallingThingsStereoTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.FallingThingsStereo
ADDITIONAL_CONFIGS = combinations_grid(variant=("single", "mixed", "both"))
FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, (np.ndarray, type(None)))
@staticmethod
def _make_dummy_depth_map(root: str, name: str, size: Tuple[int, int]):
file = pathlib.Path(root) / name
image = np.ones((size[0], size[1]), dtype=np.uint8)
PIL.Image.fromarray(image).save(file)
@staticmethod
def _make_scene_folder(root: str, scene_name: str, size: Tuple[int, int]) -> None:
root = pathlib.Path(root) / scene_name
os.makedirs(root, exist_ok=True)
# jpg images
datasets_utils.create_image_file(root, "image1.left.jpg", size=(3, size[1], size[0]))
datasets_utils.create_image_file(root, "image1.right.jpg", size=(3, size[1], size[0]))
# single channel depth maps
FallingThingsStereoTestCase._make_dummy_depth_map(root, "image1.left.depth.png", size=(size[0], size[1]))
FallingThingsStereoTestCase._make_dummy_depth_map(root, "image1.right.depth.png", size=(size[0], size[1]))
# camera settings json. Minimal example for _read_disparity function testing
settings_json = {"camera_settings": [{"intrinsic_settings": {"fx": 1}}]}
with open(root / "_camera_settings.json", "w") as f:
json.dump(settings_json, f)
def inject_fake_data(self, tmpdir, config):
fallingthings_dir = pathlib.Path(tmpdir) / "FallingThings"
os.makedirs(fallingthings_dir, exist_ok=True)
num_examples = {"single": 2, "mixed": 3, "both": 4}.get(config["variant"], 0)
variants = {
"single": ["single"],
"mixed": ["mixed"],
"both": ["single", "mixed"],
}.get(config["variant"], [])
variant_dir_prefixes = {
"single": 1,
"mixed": 0,
}
for variant_name in variants:
variant_dir = pathlib.Path(fallingthings_dir) / variant_name
os.makedirs(variant_dir, exist_ok=True)
for i in range(variant_dir_prefixes[variant_name]):
variant_dir = variant_dir / f"{i:02d}"
os.makedirs(variant_dir, exist_ok=True)
for i in range(num_examples):
self._make_scene_folder(
root=variant_dir,
scene_name=f"scene_{i:06d}",
size=(100, 200),
)
if config["variant"] == "both":
num_examples *= 2
return num_examples
def test_splits(self):
for variant_name in ["single", "mixed"]:
with self.create_dataset(variant=variant_name) as (dataset, _):
for left, right, disparity in dataset:
datasets_utils.shape_test_for_stereo(left, right, disparity)
def test_bad_input(self):
with pytest.raises(ValueError, match="Unknown value 'bad' for argument variant"):
with self.create_dataset(variant="bad"):
pass
class SceneFlowStereoTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.SceneFlowStereo
ADDITIONAL_CONFIGS = combinations_grid(
variant=("FlyingThings3D", "Driving", "Monkaa"), pass_name=("clean", "final", "both")
)
FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, (np.ndarray, type(None)))
@staticmethod
def _create_pfm_folder(
root: str, name: str, file_name_fn: Callable[..., str], num_examples: int, size: Tuple[int, int]
) -> None:
root = pathlib.Path(root) / name
os.makedirs(root, exist_ok=True)
for i in range(num_examples):
datasets_utils.make_fake_pfm_file(size[0], size[1], root / file_name_fn(i))
def inject_fake_data(self, tmpdir, config):
scene_flow_dir = pathlib.Path(tmpdir) / "SceneFlow"
os.makedirs(scene_flow_dir, exist_ok=True)
variant_dir = scene_flow_dir / config["variant"]
variant_dir_prefixes = {
"Monkaa": 0,
"Driving": 2,
"FlyingThings3D": 2,
}
os.makedirs(variant_dir, exist_ok=True)
num_examples = {"FlyingThings3D": 4, "Driving": 6, "Monkaa": 5}.get(config["variant"], 0)
passes = {
"clean": ["frames_cleanpass"],
"final": ["frames_finalpass"],
"both": ["frames_cleanpass", "frames_finalpass"],
}.get(config["pass_name"], [])
for pass_dir_name in passes:
# create pass directories
pass_dir = variant_dir / pass_dir_name
disp_dir = variant_dir / "disparity"
os.makedirs(pass_dir, exist_ok=True)
os.makedirs(disp_dir, exist_ok=True)
for i in range(variant_dir_prefixes.get(config["variant"], 0)):
pass_dir = pass_dir / str(i)
disp_dir = disp_dir / str(i)
os.makedirs(pass_dir, exist_ok=True)
os.makedirs(disp_dir, exist_ok=True)
for direction in ["left", "right"]:
for scene_idx in range(num_examples):
os.makedirs(pass_dir / f"scene_{scene_idx:06d}", exist_ok=True)
datasets_utils.create_image_folder(
root=pass_dir / f"scene_{scene_idx:06d}",
name=direction,
file_name_fn=lambda i: f"{i:06d}.png",
num_examples=1,
size=(3, 200, 100),
)
os.makedirs(disp_dir / f"scene_{scene_idx:06d}", exist_ok=True)
self._create_pfm_folder(
root=disp_dir / f"scene_{scene_idx:06d}",
name=direction,
file_name_fn=lambda i: f"{i:06d}.pfm",
num_examples=1,
size=(100, 200),
)
if config["pass_name"] == "both":
num_examples *= 2
return num_examples
def test_splits(self):
for variant_name, pass_name in itertools.product(["FlyingThings3D", "Driving", "Monkaa"], ["clean", "final"]):
with self.create_dataset(variant=variant_name, pass_name=pass_name) as (dataset, _):
for left, right, disparity in dataset:
datasets_utils.shape_test_for_stereo(left, right, disparity)
def test_bad_input(self):
with pytest.raises(ValueError, match="Unknown value 'bad' for argument variant"):
with self.create_dataset(variant="bad"):
pass
class InStereo2k(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.InStereo2k
FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, (np.ndarray, type(None)))
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "test"))
@staticmethod
def _make_scene_folder(root: str, name: str, size: Tuple[int, int]):
root = pathlib.Path(root) / name
os.makedirs(root, exist_ok=True)
datasets_utils.create_image_file(root=root, name="left.png", size=(3, size[0], size[1]))
datasets_utils.create_image_file(root=root, name="right.png", size=(3, size[0], size[1]))
datasets_utils.create_image_file(root=root, name="left_disp.png", size=(1, size[0], size[1]))
datasets_utils.create_image_file(root=root, name="right_disp.png", size=(1, size[0], size[1]))
def inject_fake_data(self, tmpdir, config):
in_stereo_dir = pathlib.Path(tmpdir) / "InStereo2k"
os.makedirs(in_stereo_dir, exist_ok=True)
split_dir = pathlib.Path(in_stereo_dir) / config["split"]
os.makedirs(split_dir, exist_ok=True)
num_examples = {"train": 4, "test": 5}.get(config["split"], 0)
for i in range(num_examples):
self._make_scene_folder(split_dir, f"scene_{i:06d}", (100, 200))
return num_examples
def test_splits(self):
for split_name in ["train", "test"]:
with self.create_dataset(split=split_name) as (dataset, _):
for left, right, disparity in dataset:
datasets_utils.shape_test_for_stereo(left, right, disparity)
def test_bad_input(self):
with pytest.raises(
ValueError, match="Unknown value 'bad' for argument split. Valid values are {'train', 'test'}."
):
with self.create_dataset(split="bad"):
pass
class SintelStereoTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.SintelStereo
ADDITIONAL_CONFIGS = combinations_grid(pass_name=("final", "clean", "both"))
FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, (np.ndarray, type(None)), (np.ndarray, type(None)))
def inject_fake_data(self, tmpdir, config):
sintel_dir = pathlib.Path(tmpdir) / "Sintel"
os.makedirs(sintel_dir, exist_ok=True)
split_dir = pathlib.Path(sintel_dir) / "training"
os.makedirs(split_dir, exist_ok=True)
# a single setting, since there are no splits
num_examples = {"final": 2, "clean": 3}
pass_names = {
"final": ["final"],
"clean": ["clean"],
"both": ["final", "clean"],
}.get(config["pass_name"], [])
for p in pass_names:
for view in [f"{p}_left", f"{p}_right"]:
root = split_dir / view
os.makedirs(root, exist_ok=True)
datasets_utils.create_image_folder(
root=root,
name="scene1",
file_name_fn=lambda i: f"{i:06d}.png",
num_examples=num_examples[p],
size=(3, 100, 200),
)
datasets_utils.create_image_folder(
root=split_dir / "occlusions",
name="scene1",
file_name_fn=lambda i: f"{i:06d}.png",
num_examples=max(num_examples.values()),
size=(1, 100, 200),
)
datasets_utils.create_image_folder(
root=split_dir / "outofframe",
name="scene1",
file_name_fn=lambda i: f"{i:06d}.png",
num_examples=max(num_examples.values()),
size=(1, 100, 200),
)
datasets_utils.create_image_folder(
root=split_dir / "disparities",
name="scene1",
file_name_fn=lambda i: f"{i:06d}.png",
num_examples=max(num_examples.values()),
size=(3, 100, 200),
)
if config["pass_name"] == "both":
num_examples = sum(num_examples.values())
else:
num_examples = num_examples.get(config["pass_name"], 0)
return num_examples
def test_splits(self):
for pass_name in ["final", "clean", "both"]:
with self.create_dataset(pass_name=pass_name) as (dataset, _):
for left, right, disparity, valid_mask in dataset:
datasets_utils.shape_test_for_stereo(left, right, disparity, valid_mask)
def test_bad_input(self):
with pytest.raises(ValueError, match="Unknown value 'bad' for argument pass_name"):
with self.create_dataset(pass_name="bad"):
pass
class ETH3DStereoestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.ETH3DStereo
ADDITIONAL_CONFIGS = combinations_grid(split=("train", "test"))
FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, (np.ndarray, type(None)), (np.ndarray, type(None)))
@staticmethod
def _create_scene_folder(num_examples: int, root_dir: str):
# make the root_dir if it does not exits
root_dir = pathlib.Path(root_dir)
os.makedirs(root_dir, exist_ok=True)
for i in range(num_examples):
scene_dir = root_dir / f"scene_{i}"
os.makedirs(scene_dir, exist_ok=True)
# populate with left right images
datasets_utils.create_image_file(root=scene_dir, name="im0.png", size=(100, 100))
datasets_utils.create_image_file(root=scene_dir, name="im1.png", size=(100, 100))
@staticmethod
def _create_annotation_folder(num_examples: int, root_dir: str):
# make the root_dir if it does not exits
root_dir = pathlib.Path(root_dir)
os.makedirs(root_dir, exist_ok=True)
# create scene directories
for i in range(num_examples):
scene_dir = root_dir / f"scene_{i}"
os.makedirs(scene_dir, exist_ok=True)
# populate with a random png file for occlusion mask, and a pfm file for disparity
datasets_utils.create_image_file(root=scene_dir, name="mask0nocc.png", size=(1, 100, 100))
pfm_path = scene_dir / "disp0GT.pfm"
datasets_utils.make_fake_pfm_file(h=100, w=100, file_name=pfm_path)
def inject_fake_data(self, tmpdir, config):
eth3d_dir = pathlib.Path(tmpdir) / "ETH3D"
num_examples = 2 if config["split"] == "train" else 3
split_name = "two_view_training" if config["split"] == "train" else "two_view_test"
split_dir = eth3d_dir / split_name
self._create_scene_folder(num_examples, split_dir)
if config["split"] == "train":
annot_dir = eth3d_dir / "two_view_training_gt"
self._create_annotation_folder(num_examples, annot_dir)
return num_examples
def test_training_splits(self):
with self.create_dataset(split="train") as (dataset, _):
for left, right, disparity, valid_mask in dataset:
datasets_utils.shape_test_for_stereo(left, right, disparity, valid_mask)
def test_testing_splits(self):
with self.create_dataset(split="test") as (dataset, _):
assert all(d == (None, None) for d in dataset._disparities)
for left, right, disparity, valid_mask in dataset:
assert valid_mask is None
datasets_utils.shape_test_for_stereo(left, right, disparity)
def test_bad_input(self):
with pytest.raises(ValueError, match="Unknown value 'bad' for argument split"):
with self.create_dataset(split="bad"):
pass
class Middlebury2014StereoTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.Middlebury2014Stereo
ADDITIONAL_CONFIGS = combinations_grid(
split=("train", "additional"),
calibration=("perfect", "imperfect", "both"),
use_ambient_views=(True, False),
)
FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, (np.ndarray, type(None)), (np.ndarray, type(None)))
@staticmethod
def _make_scene_folder(root_dir: str, scene_name: str, split: str) -> None:
calibrations = [None] if split == "test" else ["-perfect", "-imperfect"]
root_dir = pathlib.Path(root_dir)
for c in calibrations:
scene_dir = root_dir / f"{scene_name}{c}"
os.makedirs(scene_dir, exist_ok=True)
# make normal images first
datasets_utils.create_image_file(root=scene_dir, name="im0.png", size=(3, 100, 100))
datasets_utils.create_image_file(root=scene_dir, name="im1.png", size=(3, 100, 100))
datasets_utils.create_image_file(root=scene_dir, name="im1E.png", size=(3, 100, 100))
datasets_utils.create_image_file(root=scene_dir, name="im1L.png", size=(3, 100, 100))
# these are going to end up being gray scale images
datasets_utils.make_fake_pfm_file(h=100, w=100, file_name=scene_dir / "disp0.pfm")
datasets_utils.make_fake_pfm_file(h=100, w=100, file_name=scene_dir / "disp1.pfm")
def inject_fake_data(self, tmpdir, config):
split_scene_map = {
"train": ["Adirondack", "Jadeplant", "Motorcycle", "Piano"],
"additional": ["Backpack", "Bicycle1", "Cable", "Classroom1"],
"test": ["Plants", "Classroom2E", "Classroom2", "Australia"],
}
middlebury_dir = pathlib.Path(tmpdir, "Middlebury2014")
os.makedirs(middlebury_dir, exist_ok=True)
split_dir = middlebury_dir / config["split"]
os.makedirs(split_dir, exist_ok=True)
num_examples = {"train": 2, "additional": 3, "test": 4}.get(config["split"], 0)
for idx in range(num_examples):
scene_name = split_scene_map[config["split"]][idx]
self._make_scene_folder(root_dir=split_dir, scene_name=scene_name, split=config["split"])
if config["calibration"] == "both":
num_examples *= 2
return num_examples
def test_train_splits(self):
for split, calibration in itertools.product(["train", "additional"], ["perfect", "imperfect", "both"]):
with self.create_dataset(split=split, calibration=calibration) as (dataset, _):
for left, right, disparity, mask in dataset:
datasets_utils.shape_test_for_stereo(left, right, disparity, mask)
def test_test_split(self):
for split in ["test"]:
with self.create_dataset(split=split, calibration=None) as (dataset, _):
for left, right, disparity, mask in dataset:
datasets_utils.shape_test_for_stereo(left, right)
def test_augmented_view_usage(self):
with self.create_dataset(split="train", use_ambient_views=True) as (dataset, _):
for left, right, disparity, mask in dataset:
datasets_utils.shape_test_for_stereo(left, right, disparity, mask)
def test_value_err_train(self):
# train set invalid
split = "train"
calibration = None
with pytest.raises(
ValueError,
match=f"Split '{split}' has calibration settings, however None was provided as an argument."
f"\nSetting calibration to 'perfect' for split '{split}'. Available calibration settings are: 'perfect', 'imperfect', 'both'.",
):
with self.create_dataset(split=split, calibration=calibration):
pass
def test_value_err_test(self):
# test set invalid
split = "test"
calibration = "perfect"
with pytest.raises(
ValueError, match="Split 'test' has only no calibration settings, please set `calibration=None`."
):
with self.create_dataset(split=split, calibration=calibration):
pass
def test_bad_input(self):
with pytest.raises(ValueError, match="Unknown value 'bad' for argument split"):
with self.create_dataset(split="bad"):
pass
class TestDatasetWrapper:
def test_unknown_type(self):
unknown_object = object()
with pytest.raises(
TypeError, match=re.escape("is meant for subclasses of `torchvision.datasets.VisionDataset`")
):
datasets.wrap_dataset_for_transforms_v2(unknown_object)
def test_unknown_dataset(self):
class MyVisionDataset(datasets.VisionDataset):
pass
dataset = MyVisionDataset("root")
with pytest.raises(TypeError, match="No wrapper exist"):
datasets.wrap_dataset_for_transforms_v2(dataset)
def test_missing_wrapper(self):
dataset = datasets.FakeData()
with pytest.raises(TypeError, match="please open an issue"):
datasets.wrap_dataset_for_transforms_v2(dataset)
def test_subclass(self, mocker):
from torchvision import tv_tensors
sentinel = object()
mocker.patch.dict(
tv_tensors._dataset_wrapper.WRAPPER_FACTORIES,
clear=False,
values={datasets.FakeData: lambda dataset, target_keys: lambda idx, sample: sentinel},
)
class MyFakeData(datasets.FakeData):
pass
dataset = MyFakeData()
wrapped_dataset = datasets.wrap_dataset_for_transforms_v2(dataset)
assert wrapped_dataset[0] is sentinel
if __name__ == "__main__":
unittest.main()