r"""PyTorch Detection Training. To run in a multi-gpu environment, use the distributed launcher:: python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env \ train.py ... --world-size $NGPU The default hyperparameters are tuned for training on 8 gpus and 2 images per gpu. --lr 0.02 --batch-size 2 --world-size 8 If you use different number of gpus, the learning rate should be changed to 0.02/8*$NGPU. On top of that, for training Faster/Mask R-CNN, the default hyperparameters are --epochs 26 --lr-steps 16 22 --aspect-ratio-group-factor 3 Also, if you train Keypoint R-CNN, the default hyperparameters are --epochs 46 --lr-steps 36 43 --aspect-ratio-group-factor 3 Because the number of images is smaller in the person keypoint subset of COCO, the number of epochs should be adapted so that we have the same number of iterations. """ import datetime import os import time import presets import torch import torch.utils.data import torchvision import torchvision.models.detection import torchvision.models.detection.mask_rcnn import utils from coco_utils import get_coco from engine import evaluate, train_one_epoch from group_by_aspect_ratio import create_aspect_ratio_groups, GroupedBatchSampler from torchvision.transforms import InterpolationMode from transforms import SimpleCopyPaste def copypaste_collate_fn(batch): copypaste = SimpleCopyPaste(blending=True, resize_interpolation=InterpolationMode.BILINEAR) return copypaste(*utils.collate_fn(batch)) def get_dataset(is_train, args): image_set = "train" if is_train else "val" num_classes, mode = {"coco": (91, "instances"), "coco_kp": (2, "person_keypoints")}[args.dataset] with_masks = "mask" in args.model ds = get_coco( root=args.data_path, image_set=image_set, transforms=get_transform(is_train, args), mode=mode, use_v2=args.use_v2, with_masks=with_masks, ) return ds, num_classes def get_transform(is_train, args): if is_train: return presets.DetectionPresetTrain( data_augmentation=args.data_augmentation, backend=args.backend, use_v2=args.use_v2 ) elif args.weights and args.test_only: weights = torchvision.models.get_weight(args.weights) trans = weights.transforms() return lambda img, target: (trans(img), target) else: return presets.DetectionPresetEval(backend=args.backend, use_v2=args.use_v2) def get_args_parser(add_help=True): import argparse parser = argparse.ArgumentParser(description="PyTorch Detection Training", add_help=add_help) parser.add_argument("--data-path", default="/datasets01/COCO/022719/", type=str, help="dataset path") parser.add_argument( "--dataset", default="coco", type=str, help="dataset name. Use coco for object detection and instance segmentation and coco_kp for Keypoint detection", ) parser.add_argument("--model", default="maskrcnn_resnet50_fpn", type=str, help="model name") parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)") parser.add_argument( "-b", "--batch-size", default=2, type=int, help="images per gpu, the total batch size is $NGPU x batch_size" ) parser.add_argument("--epochs", default=26, type=int, metavar="N", help="number of total epochs to run") parser.add_argument( "-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers (default: 4)" ) parser.add_argument("--opt", default="sgd", type=str, help="optimizer") parser.add_argument( "--lr", default=0.02, type=float, help="initial learning rate, 0.02 is the default value for training on 8 gpus and 2 images_per_gpu", ) parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum") parser.add_argument( "--wd", "--weight-decay", default=1e-4, type=float, metavar="W", help="weight decay (default: 1e-4)", dest="weight_decay", ) parser.add_argument( "--norm-weight-decay", default=None, type=float, help="weight decay for Normalization layers (default: None, same value as --wd)", ) parser.add_argument( "--lr-scheduler", default="multisteplr", type=str, help="name of lr scheduler (default: multisteplr)" ) parser.add_argument( "--lr-step-size", default=8, type=int, help="decrease lr every step-size epochs (multisteplr scheduler only)" ) parser.add_argument( "--lr-steps", default=[16, 22], nargs="+", type=int, help="decrease lr every step-size epochs (multisteplr scheduler only)", ) parser.add_argument( "--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma (multisteplr scheduler only)" ) parser.add_argument("--print-freq", default=20, type=int, help="print frequency") parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs") parser.add_argument("--resume", default="", type=str, help="path of checkpoint") parser.add_argument("--start_epoch", default=0, type=int, help="start epoch") parser.add_argument("--aspect-ratio-group-factor", default=3, type=int) parser.add_argument("--rpn-score-thresh", default=None, type=float, help="rpn score threshold for faster-rcnn") parser.add_argument( "--trainable-backbone-layers", default=None, type=int, help="number of trainable layers of backbone" ) parser.add_argument( "--data-augmentation", default="hflip", type=str, help="data augmentation policy (default: hflip)" ) parser.add_argument( "--sync-bn", dest="sync_bn", help="Use sync batch norm", action="store_true", ) parser.add_argument( "--test-only", dest="test_only", help="Only test the model", action="store_true", ) parser.add_argument( "--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only." ) # distributed training parameters parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes") parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training") parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load") parser.add_argument("--weights-backbone", default=None, type=str, help="the backbone weights enum name to load") # Mixed precision training parameters parser.add_argument("--amp", action="store_true", help="Use torch.cuda.amp for mixed precision training") # Use CopyPaste augmentation training parameter parser.add_argument( "--use-copypaste", action="store_true", help="Use CopyPaste data augmentation. Works only with data-augmentation='lsj'.", ) parser.add_argument("--backend", default="PIL", type=str.lower, help="PIL or tensor - case insensitive") parser.add_argument("--use-v2", action="store_true", help="Use V2 transforms") return parser def main(args): if args.backend.lower() == "tv_tensor" and not args.use_v2: raise ValueError("Use --use-v2 if you want to use the tv_tensor backend.") if args.dataset not in ("coco", "coco_kp"): raise ValueError(f"Dataset should be coco or coco_kp, got {args.dataset}") if "keypoint" in args.model and args.dataset != "coco_kp": raise ValueError("Oops, if you want Keypoint detection, set --dataset coco_kp") if args.dataset == "coco_kp" and args.use_v2: raise ValueError("KeyPoint detection doesn't support V2 transforms yet") if args.output_dir: utils.mkdir(args.output_dir) utils.init_distributed_mode(args) print(args) device = torch.device(args.device) if args.use_deterministic_algorithms: torch.use_deterministic_algorithms(True) # Data loading code print("Loading data") dataset, num_classes = get_dataset(is_train=True, args=args) dataset_test, _ = get_dataset(is_train=False, args=args) print("Creating data loaders") if args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(dataset) test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test, shuffle=False) else: train_sampler = torch.utils.data.RandomSampler(dataset) test_sampler = torch.utils.data.SequentialSampler(dataset_test) if args.aspect_ratio_group_factor >= 0: group_ids = create_aspect_ratio_groups(dataset, k=args.aspect_ratio_group_factor) train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size) else: train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, args.batch_size, drop_last=True) train_collate_fn = utils.collate_fn if args.use_copypaste: if args.data_augmentation != "lsj": raise RuntimeError("SimpleCopyPaste algorithm currently only supports the 'lsj' data augmentation policies") train_collate_fn = copypaste_collate_fn data_loader = torch.utils.data.DataLoader( dataset, batch_sampler=train_batch_sampler, num_workers=args.workers, collate_fn=train_collate_fn ) data_loader_test = torch.utils.data.DataLoader( dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers, collate_fn=utils.collate_fn ) print("Creating model") kwargs = {"trainable_backbone_layers": args.trainable_backbone_layers} if args.data_augmentation in ["multiscale", "lsj"]: kwargs["_skip_resize"] = True if "rcnn" in args.model: if args.rpn_score_thresh is not None: kwargs["rpn_score_thresh"] = args.rpn_score_thresh model = torchvision.models.get_model( args.model, weights=args.weights, weights_backbone=args.weights_backbone, num_classes=num_classes, **kwargs ) model.to(device) if args.distributed and args.sync_bn: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) model_without_ddp = model if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module if args.norm_weight_decay is None: parameters = [p for p in model.parameters() if p.requires_grad] else: param_groups = torchvision.ops._utils.split_normalization_params(model) wd_groups = [args.norm_weight_decay, args.weight_decay] parameters = [{"params": p, "weight_decay": w} for p, w in zip(param_groups, wd_groups) if p] opt_name = args.opt.lower() if opt_name.startswith("sgd"): optimizer = torch.optim.SGD( parameters, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay, nesterov="nesterov" in opt_name, ) elif opt_name == "adamw": optimizer = torch.optim.AdamW(parameters, lr=args.lr, weight_decay=args.weight_decay) else: raise RuntimeError(f"Invalid optimizer {args.opt}. Only SGD and AdamW are supported.") scaler = torch.cuda.amp.GradScaler() if args.amp else None args.lr_scheduler = args.lr_scheduler.lower() if args.lr_scheduler == "multisteplr": lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma) elif args.lr_scheduler == "cosineannealinglr": lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs) else: raise RuntimeError( f"Invalid lr scheduler '{args.lr_scheduler}'. Only MultiStepLR and CosineAnnealingLR are supported." ) if args.resume: checkpoint = torch.load(args.resume, map_location="cpu") model_without_ddp.load_state_dict(checkpoint["model"]) optimizer.load_state_dict(checkpoint["optimizer"]) lr_scheduler.load_state_dict(checkpoint["lr_scheduler"]) args.start_epoch = checkpoint["epoch"] + 1 if args.amp: scaler.load_state_dict(checkpoint["scaler"]) if args.test_only: torch.backends.cudnn.deterministic = True evaluate(model, data_loader_test, device=device) return print("Start training") start_time = time.time() for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) train_one_epoch(model, optimizer, data_loader, device, epoch, args.print_freq, scaler) lr_scheduler.step() if args.output_dir: checkpoint = { "model": model_without_ddp.state_dict(), "optimizer": optimizer.state_dict(), "lr_scheduler": lr_scheduler.state_dict(), "args": args, "epoch": epoch, } if args.amp: checkpoint["scaler"] = scaler.state_dict() utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth")) utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth")) # evaluate after every epoch evaluate(model, data_loader_test, device=device) total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print(f"Training time {total_time_str}") if __name__ == "__main__": args = get_args_parser().parse_args() main(args)