import collections import warnings from functools import partial, wraps from typing import Sequence import numpy as np import torch from torch.testing._internal.common_cuda import TEST_CUDA from torch.testing._internal.common_dtype import ( _dispatch_dtypes, all_types, all_types_and, all_types_and_complex, all_types_and_complex_and, all_types_and_half, complex_types, floating_and_complex_types, floating_and_complex_types_and, floating_types, floating_types_and, floating_types_and_half, integral_types, integral_types_and, ) from torch.testing._internal.common_utils import torch_to_numpy_dtype_dict COMPLETE_DTYPES_DISPATCH = ( all_types, all_types_and_complex, all_types_and_half, floating_types, floating_and_complex_types, floating_types_and_half, integral_types, complex_types, ) EXTENSIBLE_DTYPE_DISPATCH = ( all_types_and_complex_and, floating_types_and, floating_and_complex_types_and, integral_types_and, all_types_and, ) # Better way to acquire devices? DEVICES = ["cpu"] + (["cuda"] if TEST_CUDA else []) class _dynamic_dispatch_dtypes(_dispatch_dtypes): # Class to tag the dynamically generated types. pass def get_supported_dtypes(op, sample_inputs_fn, device_type): # Returns the supported dtypes for the given operator and device_type pair. assert device_type in ["cpu", "cuda"] if not TEST_CUDA and device_type == "cuda": warnings.warn( "WARNING: CUDA is not available, empty_dtypes dispatch will be returned!" ) return _dynamic_dispatch_dtypes(()) supported_dtypes = set() for dtype in all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half): try: samples = sample_inputs_fn(op, device_type, dtype, False) except RuntimeError: # If `sample_inputs_fn` doesn't support sampling for a given # `dtype`, we assume that the `dtype` is not supported. # We raise a warning, so that user knows that this was the case # and can investigate if there was an issue with the `sample_inputs_fn`. warnings.warn( f"WARNING: Unable to generate sample for device:{device_type} and dtype:{dtype}" ) continue # We assume the dtype is supported # only if all samples pass for the given dtype. supported = True for sample in samples: try: op(sample.input, *sample.args, **sample.kwargs) except RuntimeError as re: # dtype is not supported supported = False break if supported: supported_dtypes.add(dtype) return _dynamic_dispatch_dtypes(supported_dtypes) def dtypes_dispatch_hint(dtypes): # Function returns the appropriate dispatch function (from COMPLETE_DTYPES_DISPATCH and EXTENSIBLE_DTYPE_DISPATCH) # and its string representation for the passed `dtypes`. return_type = collections.namedtuple("return_type", "dispatch_fn dispatch_fn_str") # CUDA is not available, dtypes will be empty. if len(dtypes) == 0: return return_type((), str(tuple())) set_dtypes = set(dtypes) for dispatch in COMPLETE_DTYPES_DISPATCH: # Short circuit if we get an exact match. if set(dispatch()) == set_dtypes: return return_type(dispatch, dispatch.__name__ + "()") chosen_dispatch = None chosen_dispatch_score = 0.0 for dispatch in EXTENSIBLE_DTYPE_DISPATCH: dispatch_dtypes = set(dispatch()) if not dispatch_dtypes.issubset(set_dtypes): continue score = len(dispatch_dtypes) if score > chosen_dispatch_score: chosen_dispatch_score = score chosen_dispatch = dispatch # If user passed dtypes which are lower than the lowest # dispatch type available (not likely but possible in code path). if chosen_dispatch is None: return return_type((), str(dtypes)) return return_type( partial(dispatch, *tuple(set(dtypes) - set(dispatch()))), dispatch.__name__ + str(tuple(set(dtypes) - set(dispatch()))), ) def is_dynamic_dtype_set(op): # Detect if the OpInfo entry acquired dtypes dynamically # using `get_supported_dtypes`. return op.dynamic_dtypes def str_format_dynamic_dtype(op): fmt_str = """ OpInfo({name}, dtypes={dtypes}, dtypesIfCUDA={dtypesIfCUDA}, ) """.format( name=op.name, dtypes=dtypes_dispatch_hint(op.dtypes).dispatch_fn_str, dtypesIfCUDA=dtypes_dispatch_hint(op.dtypesIfCUDA).dispatch_fn_str, ) return fmt_str def np_unary_ufunc_integer_promotion_wrapper(fn): # Wrapper that passes PyTorch's default scalar # type as an argument to the wrapped NumPy # unary ufunc when given an integer input. # This mimicks PyTorch's integer->floating point # type promotion. # # This is necessary when NumPy promotes # integer types to double, since PyTorch promotes # integer types to the default scalar type. # Helper to determine if promotion is needed def is_integral(dtype): return dtype in [ np.bool_, bool, np.uint8, np.int8, np.int16, np.int32, np.int64, ] @wraps(fn) def wrapped_fn(x): # As the default dtype can change, acquire it when function is called. # NOTE: Promotion in PyTorch is from integer types to the default dtype np_dtype = torch_to_numpy_dtype_dict[torch.get_default_dtype()] if is_integral(x.dtype): return fn(x.astype(np_dtype)) return fn(x) return wrapped_fn def reference_reduction_numpy(f, supports_keepdims=True): """Wraps a NumPy reduction operator. The wrapper function will forward dim, keepdim, mask, and identity kwargs to the wrapped function as the NumPy equivalent axis, keepdims, where, and initiak kwargs, respectively. Args: f: NumPy reduction operator to wrap supports_keepdims (bool, optional): Whether the NumPy operator accepts keepdims parameter. If it does not, the wrapper will manually unsqueeze the reduced dimensions if it was called with keepdim=True. Defaults to True. Returns: Wrapped function """ @wraps(f) def wrapper(x: np.ndarray, *args, **kwargs): # Copy keys into a set keys = set(kwargs.keys()) dim = kwargs.pop("dim", None) keepdim = kwargs.pop("keepdim", False) if "dim" in keys: dim = tuple(dim) if isinstance(dim, Sequence) else dim # NumPy reductions don't accept dim=0 for scalar inputs # so we convert it to None if and only if dim is equivalent if x.ndim == 0 and dim in {0, -1, (0,), (-1,)}: kwargs["axis"] = None else: kwargs["axis"] = dim if "keepdim" in keys and supports_keepdims: kwargs["keepdims"] = keepdim if "mask" in keys: mask = kwargs.pop("mask") if mask is not None: assert mask.layout == torch.strided kwargs["where"] = mask.cpu().numpy() if "identity" in keys: identity = kwargs.pop("identity") if identity is not None: if identity.dtype is torch.bfloat16: identity = identity.cpu().to(torch.float32) else: identity = identity.cpu() kwargs["initial"] = identity.numpy() result = f(x, *args, **kwargs) # Unsqueeze reduced dimensions if NumPy does not support keepdims if keepdim and not supports_keepdims and x.ndim > 0: dim = list(range(x.ndim)) if dim is None else dim result = np.expand_dims(result, dim) return result return wrapper def prod_numpy(a, *args, **kwargs): """ The function will call np.prod with type as np.int64 if the input type is int or uint64 if is uint. This is necessary because windows np.prod uses by default int32 while on linux it uses int64. This is for fixing integer overflow https://github.com/pytorch/pytorch/issues/77320 Returns: np.prod of input """ if "dtype" not in kwargs: if np.issubdtype(a.dtype, np.signedinteger): a = a.astype(np.int64) elif np.issubdtype(a.dtype, np.unsignedinteger): a = a.astype(np.uint64) fn = reference_reduction_numpy(np.prod) return fn(a, *args, **kwargs)