from collections import defaultdict from collections.abc import Iterable import numpy as np import torch import hypothesis from functools import reduce from hypothesis import assume from hypothesis import settings from hypothesis import strategies as st from hypothesis.extra import numpy as stnp from hypothesis.strategies import SearchStrategy from torch.testing._internal.common_quantized import _calculate_dynamic_qparams, _calculate_dynamic_per_channel_qparams # Setup for the hypothesis tests. # The tuples are (torch_quantized_dtype, zero_point_enforce), where the last # element is enforced zero_point. If None, any zero_point point within the # range of the data type is OK. # Tuple with all quantized data types. _ALL_QINT_TYPES = ( torch.quint8, torch.qint8, torch.qint32, ) # Enforced zero point for every quantized data type. # If None, any zero_point point within the range of the data type is OK. _ENFORCED_ZERO_POINT = defaultdict(lambda: None, { torch.quint8: None, torch.qint8: None, torch.qint32: 0 }) def _get_valid_min_max(qparams): scale, zero_point, quantized_type = qparams adjustment = 1 + torch.finfo(torch.float).eps _long_type_info = torch.iinfo(torch.long) long_min, long_max = _long_type_info.min / adjustment, _long_type_info.max / adjustment # make sure intermediate results are within the range of long min_value = max((long_min - zero_point) * scale, (long_min / scale + zero_point)) max_value = min((long_max - zero_point) * scale, (long_max / scale + zero_point)) return np.float32(min_value), np.float32(max_value) # This wrapper wraps around `st.floats` and checks the version of `hypothesis`, if # it is too old, removes the `width` parameter (which was introduced) # in 3.67.0 def _floats_wrapper(*args, **kwargs): if 'width' in kwargs and hypothesis.version.__version_info__ < (3, 67, 0): # As long as nan, inf, min, max are not specified, reimplement the width # parameter for older versions of hypothesis. no_nan_and_inf = ( (('allow_nan' in kwargs and not kwargs['allow_nan']) or 'allow_nan' not in kwargs) and (('allow_infinity' in kwargs and not kwargs['allow_infinity']) or 'allow_infinity' not in kwargs)) min_and_max_not_specified = ( len(args) == 0 and 'min_value' not in kwargs and 'max_value' not in kwargs ) if no_nan_and_inf and min_and_max_not_specified: if kwargs['width'] == 16: kwargs['min_value'] = torch.finfo(torch.float16).min kwargs['max_value'] = torch.finfo(torch.float16).max elif kwargs['width'] == 32: kwargs['min_value'] = torch.finfo(torch.float32).min kwargs['max_value'] = torch.finfo(torch.float32).max elif kwargs['width'] == 64: kwargs['min_value'] = torch.finfo(torch.float64).min kwargs['max_value'] = torch.finfo(torch.float64).max kwargs.pop('width') return st.floats(*args, **kwargs) def floats(*args, **kwargs): if 'width' not in kwargs: kwargs['width'] = 32 return _floats_wrapper(*args, **kwargs) """Hypothesis filter to avoid overflows with quantized tensors. Args: tensor: Tensor of floats to filter qparams: Quantization parameters as returned by the `qparams`. Returns: True Raises: hypothesis.UnsatisfiedAssumption Note: This filter is slow. Use it only when filtering of the test cases is absolutely necessary! """ def assume_not_overflowing(tensor, qparams): min_value, max_value = _get_valid_min_max(qparams) assume(tensor.min() >= min_value) assume(tensor.max() <= max_value) return True """Strategy for generating the quantization parameters. Args: dtypes: quantized data types to sample from. scale_min / scale_max: Min and max scales. If None, set to 1e-3 / 1e3. zero_point_min / zero_point_max: Min and max for the zero point. If None, set to the minimum and maximum of the quantized data type. Note: The min and max are only valid if the zero_point is not enforced by the data type itself. Generates: scale: Sampled scale. zero_point: Sampled zero point. quantized_type: Sampled quantized type. """ @st.composite def qparams(draw, dtypes=None, scale_min=None, scale_max=None, zero_point_min=None, zero_point_max=None): if dtypes is None: dtypes = _ALL_QINT_TYPES if not isinstance(dtypes, (list, tuple)): dtypes = (dtypes,) quantized_type = draw(st.sampled_from(dtypes)) _type_info = torch.iinfo(quantized_type) qmin, qmax = _type_info.min, _type_info.max # TODO: Maybe embed the enforced zero_point in the `torch.iinfo`. _zp_enforced = _ENFORCED_ZERO_POINT[quantized_type] if _zp_enforced is not None: zero_point = _zp_enforced else: _zp_min = qmin if zero_point_min is None else zero_point_min _zp_max = qmax if zero_point_max is None else zero_point_max zero_point = draw(st.integers(min_value=_zp_min, max_value=_zp_max)) if scale_min is None: scale_min = torch.finfo(torch.float).eps if scale_max is None: scale_max = torch.finfo(torch.float).max scale = draw(floats(min_value=scale_min, max_value=scale_max, width=32)) return scale, zero_point, quantized_type """Strategy to create different shapes. Args: min_dims / max_dims: minimum and maximum rank. min_side / max_side: minimum and maximum dimensions per rank. Generates: Possible shapes for a tensor, constrained to the rank and dimensionality. Example: # Generates 3D and 4D tensors. @given(Q = qtensor(shapes=array_shapes(min_dims=3, max_dims=4)) some_test(self, Q):... """ @st.composite def array_shapes(draw, min_dims=1, max_dims=None, min_side=1, max_side=None, max_numel=None): """Return a strategy for array shapes (tuples of int >= 1).""" assert(min_dims < 32) if max_dims is None: max_dims = min(min_dims + 2, 32) assert(max_dims < 32) if max_side is None: max_side = min_side + 5 candidate = st.lists(st.integers(min_side, max_side), min_size=min_dims, max_size=max_dims) if max_numel is not None: candidate = candidate.filter(lambda x: reduce(int.__mul__, x, 1) <= max_numel) return draw(candidate.map(tuple)) """Strategy for generating test cases for tensors. The resulting tensor is in float32 format. Args: shapes: Shapes under test for the tensor. Could be either a hypothesis strategy, or an iterable of different shapes to sample from. elements: Elements to generate from for the returned data type. If None, the strategy resolves to float within range [-1e6, 1e6]. qparams: Instance of the qparams strategy. This is used to filter the tensor such that the overflow would not happen. Generates: X: Tensor of type float32. Note that NaN and +/-inf is not included. qparams: (If `qparams` arg is set) Quantization parameters for X. The returned parameters are `(scale, zero_point, quantization_type)`. (If `qparams` arg is None), returns None. """ @st.composite def tensor(draw, shapes=None, elements=None, qparams=None): if isinstance(shapes, SearchStrategy): _shape = draw(shapes) else: _shape = draw(st.sampled_from(shapes)) if qparams is None: if elements is None: elements = floats(-1e6, 1e6, allow_nan=False, width=32) X = draw(stnp.arrays(dtype=np.float32, elements=elements, shape=_shape)) assume(not (np.isnan(X).any() or np.isinf(X).any())) return X, None qparams = draw(qparams) if elements is None: min_value, max_value = _get_valid_min_max(qparams) elements = floats(min_value, max_value, allow_infinity=False, allow_nan=False, width=32) X = draw(stnp.arrays(dtype=np.float32, elements=elements, shape=_shape)) # Recompute the scale and zero_points according to the X statistics. scale, zp = _calculate_dynamic_qparams(X, qparams[2]) enforced_zp = _ENFORCED_ZERO_POINT.get(qparams[2], None) if enforced_zp is not None: zp = enforced_zp return X, (scale, zp, qparams[2]) @st.composite def per_channel_tensor(draw, shapes=None, elements=None, qparams=None): if isinstance(shapes, SearchStrategy): _shape = draw(shapes) else: _shape = draw(st.sampled_from(shapes)) if qparams is None: if elements is None: elements = floats(-1e6, 1e6, allow_nan=False, width=32) X = draw(stnp.arrays(dtype=np.float32, elements=elements, shape=_shape)) assume(not (np.isnan(X).any() or np.isinf(X).any())) return X, None qparams = draw(qparams) if elements is None: min_value, max_value = _get_valid_min_max(qparams) elements = floats(min_value, max_value, allow_infinity=False, allow_nan=False, width=32) X = draw(stnp.arrays(dtype=np.float32, elements=elements, shape=_shape)) # Recompute the scale and zero_points according to the X statistics. scale, zp = _calculate_dynamic_per_channel_qparams(X, qparams[2]) enforced_zp = _ENFORCED_ZERO_POINT.get(qparams[2], None) if enforced_zp is not None: zp = enforced_zp # Permute to model quantization along an axis axis = int(np.random.randint(0, X.ndim, 1)) permute_axes = np.arange(X.ndim) permute_axes[0] = axis permute_axes[axis] = 0 X = np.transpose(X, permute_axes) return X, (scale, zp, axis, qparams[2]) """Strategy for generating test cases for tensors used in Conv. The resulting tensors is in float32 format. Args: spatial_dim: Spatial Dim for feature maps. If given as an iterable, randomly picks one from the pool to make it the spatial dimension batch_size_range: Range to generate `batch_size`. Must be tuple of `(min, max)`. input_channels_per_group_range: Range to generate `input_channels_per_group`. Must be tuple of `(min, max)`. output_channels_per_group_range: Range to generate `output_channels_per_group`. Must be tuple of `(min, max)`. feature_map_range: Range to generate feature map size for each spatial_dim. Must be tuple of `(min, max)`. kernel_range: Range to generate kernel size for each spatial_dim. Must be tuple of `(min, max)`. max_groups: Maximum number of groups to generate. elements: Elements to generate from for the returned data type. If None, the strategy resolves to float within range [-1e6, 1e6]. qparams: Strategy for quantization parameters. for X, w, and b. Could be either a single strategy (used for all) or a list of three strategies for X, w, b. Generates: (X, W, b, g): Tensors of type `float32` of the following drawen shapes: X: (`batch_size, input_channels, H, W`) W: (`output_channels, input_channels_per_group) + kernel_shape b: `(output_channels,)` groups: Number of groups the input is divided into Note: X, W, b are tuples of (Tensor, qparams), where qparams could be either None or (scale, zero_point, quantized_type) Example: @given(tensor_conv( spatial_dim=2, batch_size_range=(1, 3), input_channels_per_group_range=(1, 7), output_channels_per_group_range=(1, 7), feature_map_range=(6, 12), kernel_range=(3, 5), max_groups=4, elements=st.floats(-1.0, 1.0), qparams=qparams() )) """ @st.composite def tensor_conv( draw, spatial_dim=2, batch_size_range=(1, 4), input_channels_per_group_range=(3, 7), output_channels_per_group_range=(3, 7), feature_map_range=(6, 12), kernel_range=(3, 7), max_groups=1, can_be_transposed=False, elements=None, qparams=None ): # Resolve the minibatch, in_channels, out_channels, iH/iW, iK/iW batch_size = draw(st.integers(*batch_size_range)) input_channels_per_group = draw( st.integers(*input_channels_per_group_range)) output_channels_per_group = draw( st.integers(*output_channels_per_group_range)) groups = draw(st.integers(1, max_groups)) input_channels = input_channels_per_group * groups output_channels = output_channels_per_group * groups if isinstance(spatial_dim, Iterable): spatial_dim = draw(st.sampled_from(spatial_dim)) feature_map_shape = [] for i in range(spatial_dim): feature_map_shape.append(draw(st.integers(*feature_map_range))) kernels = [] for i in range(spatial_dim): kernels.append(draw(st.integers(*kernel_range))) tr = False weight_shape = (output_channels, input_channels_per_group) + tuple(kernels) bias_shape = output_channels if can_be_transposed: tr = draw(st.booleans()) if tr: weight_shape = (input_channels, output_channels_per_group) + tuple(kernels) bias_shape = output_channels # Resolve the tensors if qparams is not None: if isinstance(qparams, (list, tuple)): assert(len(qparams) == 3), "Need 3 qparams for X, w, b" else: qparams = [qparams] * 3 X = draw(tensor(shapes=( (batch_size, input_channels) + tuple(feature_map_shape),), elements=elements, qparams=qparams[0])) W = draw(tensor(shapes=(weight_shape,), elements=elements, qparams=qparams[1])) b = draw(tensor(shapes=(bias_shape,), elements=elements, qparams=qparams[2])) return X, W, b, groups, tr # We set the deadline in the currently loaded profile. # Creating (and loading) a separate profile overrides any settings the user # already specified. hypothesis_version = hypothesis.version.__version_info__ current_settings = settings._profiles[settings._current_profile].__dict__ current_settings['deadline'] = None if hypothesis_version >= (3, 16, 0) and hypothesis_version < (5, 0, 0): current_settings['timeout'] = hypothesis.unlimited def assert_deadline_disabled(): if hypothesis_version < (3, 27, 0): import warnings warning_message = ( "Your version of hypothesis is outdated. " "To avoid `DeadlineExceeded` errors, please update. " "Current hypothesis version: {}".format(hypothesis.__version__) ) warnings.warn(warning_message) else: assert settings().deadline is None