#pragma once // See NOTE: [Tensor vs. TensorBase] // https://github.com/pytorch/pytorch/pull/66979 #include #include #include namespace at { namespace native { namespace detail { enum class GridSamplerInterpolation {Bilinear, Nearest, Bicubic}; enum class GridSamplerPadding {Zeros, Border, Reflection}; } // namespace detail using detail::GridSamplerInterpolation; using detail::GridSamplerPadding; namespace { // See NOTE [ grid_sampler Native Functions ]. void check_grid_sampler_common( const TensorBase& input, const TensorBase& grid ) { auto input_opt = input.options(); auto grid_opt = grid.options(); TORCH_CHECK( input.defined(), "grid_sampler(): expected input to not be undefined"); TORCH_CHECK( grid.defined(), "grid_sampler(): expected grid to not be undefined"); TORCH_CHECK( input_opt.device() == grid_opt.device(), "grid_sampler(): expected input and grid to be on same device, but input " "is on ", input_opt.device(), " and grid is on ", grid_opt.device()); TORCH_CHECK( input_opt.layout() == kStrided && grid_opt.layout() == kStrided, "grid_sampler(): expected input and grid to have torch.strided layout, but " "input has ", input_opt.layout(), " and grid has ", grid_opt.layout()); TORCH_CHECK( input.size(0) == grid.size(0), "grid_sampler(): expected grid and input to have same batch size, but got " "input with sizes ", input.sizes(), " and grid with sizes ", grid.sizes()); TORCH_CHECK( grid.size(-1) == input.dim() - 2, "grid_sampler(): expected grid to have size ", input.dim() - 2, " in last " "dimension, but got grid with sizes ", grid.sizes()); for (const auto i : c10::irange(2, input.dim())) { TORCH_CHECK(input.size(i) > 0, "grid_sampler(): expected input to have non-empty spatial dimensions, " "but input has sizes ", input.sizes(), " with dimension ", i, " being " "empty"); } } // See NOTE [ grid_sampler Native Functions ]. void check_grid_sampler_2d( const TensorBase& input, const TensorBase& grid ) { TORCH_CHECK( input.dim() == 4 && input.dim() == grid.dim(), "grid_sampler(): expected 4D input and grid with same number of " "dimensions, but got input with sizes ", input.sizes(), " and grid with sizes ", grid.sizes()); } // See NOTE [ grid_sampler Native Functions ]. void check_grid_sampler_3d( const TensorBase& input, const TensorBase& grid, int64_t interpolation_mode ) { TORCH_CHECK( input.dim() == 5 && input.dim() == grid.dim(), "grid_sampler(): expected 5D input and grid with same number of " "dimensions, but got input with sizes ", input.sizes(), " and grid with sizes ", grid.sizes()); TORCH_CHECK( !(input.dim() == 5 && static_cast(interpolation_mode) == GridSamplerInterpolation::Bicubic), "grid_sampler(): bicubic interpolation only supports 4D input"); } // See NOTE [ grid_sampler Native Functions ]. // cudnn does not support inputs larger than 1024. bool cond_cudnn_grid_sampler( const TensorBase& input, const TensorBase& grid ) { return ( at::native::cudnn_is_acceptable(input) && at::native::cudnn_is_acceptable(grid) && at::native::canUse32BitIndexMath(input) && at::native::canUse32BitIndexMath(grid) && input.dim() == 4 && input.sym_size(1) <= 1024); } } // anonymous namespace }} // namespace at::native