import bisect import itertools import math from typing import Any, Dict, List, Optional, Tuple import torch import torch.distributed as dist import torch.nn.functional as F from torch.distributed import distributed_c10d from torch.distributed._shard.sharded_tensor import ( Shard, ShardedTensor, ShardedTensorMetadata, TensorProperties, ) from torch.distributed._shard.sharding_spec import ( ChunkShardingSpec, EnumerableShardingSpec, ShardingSpec, ShardMetadata, ) def _sharding_spec_to_offsets( sharding_spec: ShardingSpec, tensor_numel: int, world_size: int ) -> List[int]: r""" Translates the sharding spec to a list of offsets along dim 0. If the sharding spec is ChunkShardingSpec, only the ``dim`` is used and the placement is not used. """ offsets: List[int] = [] if isinstance(sharding_spec, EnumerableShardingSpec): for shard in sharding_spec.shards: offsets.append(shard.shard_offsets[0]) elif isinstance(sharding_spec, ChunkShardingSpec): assert sharding_spec.dim == 0 chunk_size = math.ceil(tensor_numel / world_size) if chunk_size == 1: offsets = [ rank if rank < tensor_numel else tensor_numel for rank in range(world_size) ] else: offsets = [chunk_size if rank > 0 else 0 for rank in range(world_size)] offsets = list(itertools.accumulate(offsets)) else: raise ValueError(f"Un-recognized sharding spec type {type(sharding_spec)}.") return offsets def _offsets_to_split_sizes( input_offsets: List[int], output_offsets: List[int], tensor_numel: int, world_size: int, my_rank: int, ) -> Tuple[List[int], List[int]]: r""" Given the shard offsets for each rank of the input tensor and output tensor, this API returns the corresponding split sizes that can be passed to all_to_all_single(). """ def _get_interval(offsets): if my_rank != world_size - 1: return offsets[my_rank], offsets[my_rank + 1] - 1 else: return offsets[my_rank], tensor_numel - 1 def _offsets_to_sizes(offsets, begin, end): sizes = [] for i, offset in enumerate(offsets): next_offset = offsets[i + 1] if i < len(offsets) - 1 else end + 1 sizes.append( (next_offset - offset) - max(begin - offset, 0) - max(next_offset - end - 1, 0) ) return sizes def _convert(from_offsets, to_offsets, split_sizes): begin, end = _get_interval(from_offsets) to_begin_rank = bisect.bisect(to_offsets, begin) - 1 to_end_rank = bisect.bisect(to_offsets, end) - 1 _split_sizes = _offsets_to_sizes( to_offsets[to_begin_rank : to_end_rank + 1], begin, end ) split_sizes[to_begin_rank : to_end_rank + 1] = _split_sizes input_split_sizes = [0 for _ in range(world_size)] output_split_sizes = [0 for _ in range(world_size)] _convert(input_offsets, output_offsets, input_split_sizes) _convert(output_offsets, input_offsets, output_split_sizes) return input_split_sizes, output_split_sizes def _reshard_flatten_tensor( input_tensor: ShardedTensor, output_spec: ShardingSpec, world_size: int, my_rank: int, device: torch.device, process_group: Optional[dist.ProcessGroup], ) -> torch.Tensor: """ Resharded a sharded flatten tensor, this is used by FSDP to do sharded state_dict. But the functionaility is not supported by ShardedTensor. This API is designed to be used for FSDP; therefore this API supports only 1-D ShardedTensor (hence the naming, reshard_flatten_tensor). This API uses the ChunkShardingSpec and EnumerableShardingSpec from torch.distributed.sharding_spec but ignores the placement field in ChunkShardingSpec, as the placement requires the callees understand the number of GPUs per node. The API simply uses the semantics of the sharding specs. Args: input_tensor (ShardedTensor): the original ShardedTensor. Must be 1D. output_spec (ShardingSpec): the sharding spect for the output tensor. world_size (int): total trainer count. my_rank (int): the rank for this trainer. Returns: The local shard for the new ShardedTensor. """ input_spec = input_tensor.sharding_spec() size = input_tensor.size() if isinstance(size, int): raise ValueError("The input tensor has no dimensions.") tensor_numel = size.numel() input_offsets = _sharding_spec_to_offsets(input_spec, tensor_numel, world_size) output_offsets = _sharding_spec_to_offsets(output_spec, tensor_numel, world_size) input_split_sizes, output_split_sizes = _offsets_to_split_sizes( input_offsets, output_offsets, tensor_numel, world_size, my_rank ) output_size = sum(output_split_sizes) local_shard = torch.empty(output_size, dtype=input_tensor.dtype, device=device) dist.all_to_all_single( local_shard, input_tensor.local_shards()[0].tensor, input_split_sizes=input_split_sizes, output_split_sizes=output_split_sizes, group=process_group, ) return local_shard def _all_gather_sharded_tensor( sharded_tensor: ShardedTensor, pg: Optional[dist.ProcessGroup] = None ) -> torch.Tensor: if pg is None: pg = distributed_c10d._get_default_group() world_size = dist.get_world_size(pg) shards = sharded_tensor.local_shards() dim_0_size = sharded_tensor.size()[0] # type: ignore[index] tensor_numel = sharded_tensor.size().numel() # type: ignore[union-attr] chunk_size = math.ceil(dim_0_size / world_size) * tensor_numel // dim_0_size cuda_device = torch.device("cuda", torch.cuda.current_device()) if shards: local_tensor = shards[0].tensor.flatten() if not local_tensor.is_cuda: move_to_cpu = torch.ones(1, device=cuda_device) local_tensor = local_tensor.cuda() else: move_to_cpu = torch.zeros(1, device=cuda_device) num_padding = chunk_size - local_tensor.numel() if num_padding > 0: local_tensor = F.pad(local_tensor, [0, num_padding]) else: local_tensor = torch.zeros( chunk_size, dtype=sharded_tensor.dtype, device=cuda_device ) move_to_cpu = torch.zeros(1, device=cuda_device) tensor = torch.empty( chunk_size * world_size, dtype=local_tensor.dtype, device=cuda_device, ) dist._all_gather_base(tensor, local_tensor, group=pg) tensor = tensor.narrow(0, 0, tensor_numel).reshape(sharded_tensor.size()) return tensor def _gather_state_dict( state_dict: Dict[str, Any], pg: Optional[dist.ProcessGroup] = None, ) -> Dict[str, Any]: """ Given a state_dict, this API gathers all the ShardedTensors in the state_dict. """ new_state_dict = {} for key, tensor in state_dict.items(): if isinstance(tensor, ShardedTensor): output_tensor = _all_gather_sharded_tensor(tensor, pg) if tensor.local_shards() and tensor.local_shards()[0].tensor.is_cuda: tensor = output_tensor else: tensor = output_tensor.cpu() new_state_dict[key] = tensor return new_state_dict def _create_chunk_sharded_tensor( tensor: torch.Tensor, rank: int, world_size: int, num_devices_per_node: int, pg: dist.ProcessGroup, ) -> ShardedTensor: """ Shard a tensor to chunks along the first dimension. The local rank will gets its corresponding chunk as the local shard to create a ShardedTensor. """ chunks = tensor.chunk(world_size, dim=0) if len(chunks) > rank: local_shard = chunks[rank].clone() offsets = [0 for _ in tensor.size()] offsets[0] = math.ceil(tensor.size()[0] / world_size) * rank local_shards = [Shard.from_tensor_and_offsets(local_shard, offsets, rank)] else: local_shards = [] # Create a ShardedTensor without invoking communication. chunk_sizes = [list(chunk.size()) for chunk in chunks] dim0_offsets = [0] + list( itertools.accumulate([chunk_size[0] for chunk_size in chunk_sizes]) )[:-1] offsets = [0] * (len(chunk_sizes[0]) - 1) chunk_offsets = [[d0] + offsets for d0 in dim0_offsets] placements = [ f"rank:{r}/cuda:{r % num_devices_per_node}" for r in range(len(chunk_sizes)) ] assert len(chunk_sizes) == len(chunk_offsets) == len(placements) shard_metadata = [ ShardMetadata(offset, size, placement) for offset, size, placement in zip(chunk_offsets, chunk_sizes, placements) ] sharded_tensor_metadata = ShardedTensorMetadata( shards_metadata=shard_metadata, size=tensor.size(), tensor_properties=TensorProperties( dtype=tensor.dtype, layout=tensor.layout, requires_grad=False, memory_format=torch.contiguous_format, pin_memory=tensor.is_pinned(), ), ) return ShardedTensor._init_from_local_shards_and_global_metadata( local_shards, sharded_tensor_metadata=sharded_tensor_metadata, process_group=pg )