import torch from ._common_operator_config_utils import ( _get_binary_op_configs, _get_bn_configs, _get_cat_config, _get_conv_configs, _get_default_op_configs, _get_embedding_op_configs, _get_fixed_qparams_op_configs, _get_linear_configs, _get_rnn_op_configs, _get_share_qparams_op_configs, _get_tensor_info_op_configs, ) from .backend_config import BackendConfig, DTypeConfig __all__ = [ "get_fbgemm_backend_config", ] # =================== # | DTYPE CONFIGS | # =================== # TODO: For now, these DTypeConfigs are identical to the ones defined in native.py # In the future, once we support specifying quant_min/quant_max and scale_min/scale_max, # these will diverge. In particular, for FBGEMM, we will restrict the activation quantized # values to within [0, 127]. fbgemm_weighted_op_quint8_dtype_config = DTypeConfig( input_dtype=torch.quint8, output_dtype=torch.quint8, weight_dtype=torch.qint8, bias_dtype=torch.float, ) fbgemm_default_op_quint8_dtype_config = DTypeConfig( input_dtype=torch.quint8, output_dtype=torch.quint8, ) fbgemm_default_op_fp16_dtype_config = DTypeConfig( input_dtype=torch.float16, output_dtype=torch.float16, weight_dtype=torch.float16, bias_dtype=torch.float16, ) fbgemm_default_dynamic_int8_dtype_config = DTypeConfig( input_dtype=torch.quint8, output_dtype=torch.float, weight_dtype=torch.qint8, bias_dtype=torch.float, is_dynamic=True, ) fbgemm_default_dynamic_float16_dtype_config = DTypeConfig( input_dtype=torch.float16, output_dtype=torch.float, weight_dtype=torch.float16, bias_dtype=torch.float, is_dynamic=True, ) fbgemm_weight_only_quint8_dtype_config = DTypeConfig( input_dtype=torch.float, output_dtype=torch.float, weight_dtype=torch.quint8, ) fbgemm_weight_only_quint4x2_dtype_config = DTypeConfig( input_dtype=torch.float, output_dtype=torch.float, weight_dtype=torch.quint4x2, ) # ===================== # | BACKEND CONFIGS | # ===================== def get_fbgemm_backend_config() -> BackendConfig: """ Return the `BackendConfig` for PyTorch's native FBGEMM backend. """ conv_dtype_configs = [fbgemm_weighted_op_quint8_dtype_config] linear_dtype_configs = [ fbgemm_weighted_op_quint8_dtype_config, fbgemm_default_dynamic_int8_dtype_config, fbgemm_default_dynamic_float16_dtype_config, ] binary_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config] default_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config] fixed_qparams_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config] share_qparams_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config] tensor_info_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config] rnn_op_dtype_configs = [ fbgemm_default_dynamic_int8_dtype_config, fbgemm_default_dynamic_float16_dtype_config, ] embedding_op_dtype_configs = [ fbgemm_weight_only_quint8_dtype_config, fbgemm_weight_only_quint4x2_dtype_config, ] return BackendConfig("fbgemm") \ .set_backend_pattern_configs(_get_conv_configs(conv_dtype_configs)) \ .set_backend_pattern_configs(_get_linear_configs(linear_dtype_configs)) \ .set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs)) \ .set_backend_pattern_config(_get_cat_config(default_op_dtype_configs)) \ .set_backend_pattern_configs(_get_default_op_configs(default_op_dtype_configs)) \ .set_backend_pattern_configs(_get_fixed_qparams_op_configs(fixed_qparams_op_dtype_configs)) \ .set_backend_pattern_configs(_get_share_qparams_op_configs(share_qparams_op_dtype_configs)) \ .set_backend_pattern_configs(_get_tensor_info_op_configs(tensor_info_op_dtype_configs)) \ .set_backend_pattern_configs(_get_bn_configs(default_op_dtype_configs)) \ .set_backend_pattern_configs(_get_rnn_op_configs(rnn_op_dtype_configs)) \ .set_backend_pattern_configs(_get_embedding_op_configs(embedding_op_dtype_configs))