import abc import copy from collections import defaultdict from typing import Any, Dict, Optional, Set, Tuple, List, Type import torch from torch import nn from torch.nn.utils import parametrize from .utils import ( FakeSparsity, get_arg_info_from_tensor_fqn, module_to_fqn, ) __all__ = ["BaseSparsifier"] SUPPORTED_MODULES = { nn.Linear } KEYS_NOT_IN_STATE_DICT = ["module", "module_fqn", "tensor_name"] __all__ = ["BaseSparsifier"] # TODO update desc with new config args class BaseSparsifier(abc.ABC): r"""Base class for all sparsifiers. Abstract methods that need to be implemented: - update_mask: Function to compute a new mask for all keys in the `groups`. Args: - model [nn.Module]: model to configure. The model itself is not saved but used for the state_dict saving / loading. - config [list]: configuration elements should be a dict map that includes `tensor_fqn` of tensors to sparsify - defaults [dict]: default configurations will be attached to the configuration. Only the keys that don't exist in the `config` will be updated. Example:: >>> # xdoctest: +SKIP("Can't instantiate abstract class BaseSparsifier with abstract method update_mask") >>> config = [{'tensor_fqn': 'layer1.weight', 'tensor_fqn': 'linear2.weight2', 'sparsity_level': 0.5}] >>> defaults = {'sparsity_level': 0.7} >>> # model.layer1.weight will have `sparsity_level` = 0.7 (getting default) >>> sparsifier = BaseSparsifier(config, defaults) """ def __init__(self, defaults: Optional[Dict[str, Any]] = None): super().__init__() self.defaults: Dict[str, Any] = defaults or {} self.state: Dict[str, Dict] = defaultdict(dict) self.groups: List[Dict[str, Any]] = [] self.enable_mask_update = True def __getstate__(self) -> Dict[str, Any]: return { 'defaults': self.defaults, 'state': self.state, 'groups': self.groups, } def __setstate__(self, state: Dict[str, Dict[str, Any]]) -> None: self.__dict__.update(state) def __repr__(self): format_string = self.__class__.__name__ + ' (' for i, sparse_args in enumerate(self.groups): module = sparse_args['module'] format_string += '\n' format_string += f'\tGroup {i}\n' format_string += f'\t module: {module}\n' for key in sorted(sparse_args.keys()): if key == "module": continue format_string += f"\t {key}: {sparse_args[key]}\n" format_string += ")" return format_string def state_dict(self) -> Dict[str, Any]: r"""Returns the state of the optimizer as a :class:`dict`. It contains: * state - current state of the sparsification. * groups - a list containing all sparsity configuration groups with the key 'tensor_fqn' specifying the path to the sparsified tensor within a model TODO: Need a clean way of loading the state of the "prepared" module """ groups: List[Dict[str, Any]] = [ dict(filter(lambda key_value: key_value[0] not in KEYS_NOT_IN_STATE_DICT , mg.items())) for mg in self.groups ] return { 'state': self.state, 'groups': groups, } def load_state_dict(self, state_dict: Dict[str, Any], strict: bool = True): groups = copy.deepcopy(state_dict['groups']) states = state_dict['state'] for tensor_fqn, s in states.items(): arg_info = get_arg_info_from_tensor_fqn(self.model, tensor_fqn) module = arg_info["module"] tensor_name = arg_info["tensor_name"] if strict and module is None: raise RuntimeError(f"Error loading {tensor_fqn} into the model") found = False for p in module.parametrizations[tensor_name]: if isinstance(p, FakeSparsity): found = True break if not found: p = FakeSparsity(torch.ones(getattr(module, tensor_name).shape)) parametrize.register_parametrization(module, tensor_name, p) if s.get("mask", None) is not None: mask = s.pop("mask") p.mask = mask for mg in groups: if mg["tensor_fqn"] == tensor_fqn: mg.update(arg_info) self.__setstate__({"state": states, "groups": groups}) def make_config_from_model( self, model: nn.Module, SUPPORTED_MODULES: Set[Type] = SUPPORTED_MODULES, ) -> None: self.config = [] stack = [model] while stack: module = stack.pop() for name, child in module.named_children(): if type(child) in SUPPORTED_MODULES: module_fqn = module_to_fqn(model, child) assert isinstance(module_fqn, str) # for mypy self.config.append( {"tensor_fqn": module_fqn + ".weight"} ) else: stack.append(child) def prepare(self, model, config): r"""Prepares a model, by adding the parametrizations. Note:: The model is modified inplace. If you need to preserve the original model, use copy.deepcopy. """ self.model = model # TODO: Need to figure out how to load without this. self.config = config # If no config -- try getting all the supported layers if self.config is None: self.make_config_from_model(model) # TODO: Remove the configuration by reference ('module') for module_config in self.config: assert isinstance(module_config, dict), ( "config elements should be dicts not modules i.e.:" "[{`tensor_fqn`: `foo.bar.weight`}, {`tensor_fqn`: ... }, ...]" ) assert isinstance(self.defaults, Dict) # for mypy local_args = copy.deepcopy(self.defaults) local_args.update(module_config) tensor_fqn = local_args.get("tensor_fqn", None) assert tensor_fqn is not None, ( "tensor_fqn is a required argument in the sparsity config which" "replaces previous `module` and [module]`fqn` arguments" ) # populate all information from tensor_fqn info_from_tensor_fqn = get_arg_info_from_tensor_fqn(model, tensor_fqn) # check that whatever was put into local_args agrees with what was obtained # from tensor_fqn for key in info_from_tensor_fqn.keys(): if key in local_args: assert ( info_from_tensor_fqn[key] == local_args[key] or ( key == "tensor_fqn" and "." + info_from_tensor_fqn[key] == local_args[key] ) # info_from_tensor_fqn will chop leading '.' from tensor_fqn so ignore that ), ( "Given both `{}` and `tensor_fqn` in the config, it is expected them to " "agree!".format(key) ) local_args.update(info_from_tensor_fqn) self.groups.append(local_args) self._prepare() def _prepare(self, *args, **kwargs): r"""Adds mask parametrization to the layer weight """ for config in self.groups: module = config['module'] tensor_name = config['tensor_name'] parametrization = config.get('parametrization', FakeSparsity) mask = config.get('mask', torch.ones_like(getattr(module, tensor_name))) self.state[config['tensor_fqn']]['mask'] = mask parametrize.register_parametrization(module, tensor_name, parametrization(mask)) def squash_mask(self, params_to_keep: Optional[Tuple[str, ...]] = None, params_to_keep_per_layer: Optional[Dict[str, Tuple[str, ...]]] = None, *args, **kwargs): r"""Squashes the sparse masks into the appropriate tensors. If either the `params_to_keep` or `params_to_keep_per_layer` is set, the module will have a `sparse_params` dict attached to it. Args: params_to_keep: List of keys to save in the module or a dict representing the modules and keys that will have sparsity parameters saved params_to_keep_per_layer: Dict to specify the params that should be saved for specific layers. The keys in the dict should be the module fqn, while the values should be a list of strings with the names of the variables to save in the `sparse_params` Examples: >>> # xdoctest: +SKIP("locals are undefined") >>> # Don't save any sparse params >>> sparsifier.squash_mask() >>> hasattr(model.submodule1, 'sparse_params') False >>> # Keep sparse params per layer >>> sparsifier.squash_mask( ... params_to_keep_per_layer={ ... 'submodule1.linear1': ('foo', 'bar'), ... 'submodule2.linear42': ('baz',) ... }) >>> print(model.submodule1.linear1.sparse_params) {'foo': 42, 'bar': 24} >>> print(model.submodule2.linear42.sparse_params) {'baz': 0.1} >>> # Keep sparse params for all layers >>> sparsifier.squash_mask(params_to_keep=('foo', 'bar')) >>> print(model.submodule1.linear1.sparse_params) {'foo': 42, 'bar': 24} >>> print(model.submodule2.linear42.sparse_params) {'foo': 42, 'bar': 24} >>> # Keep some sparse params for all layers, and specific ones for >>> # some other layers >>> sparsifier.squash_mask( ... params_to_keep=('foo', 'bar'), ... params_to_keep_per_layer={ ... 'submodule2.linear42': ('baz',) ... }) >>> print(model.submodule1.linear1.sparse_params) {'foo': 42, 'bar': 24} >>> print(model.submodule2.linear42.sparse_params) {'foo': 42, 'bar': 24, 'baz': 0.1} """ for config in self.groups: module = config['module'] tensor_name = config['tensor_name'] parametrize.remove_parametrizations(module, tensor_name, leave_parametrized=True) sparse_params = {} if params_to_keep is not None: global_params = {k: config[k] for k in params_to_keep} sparse_params.update(global_params) if params_to_keep_per_layer is not None: params = params_to_keep_per_layer.get(config["module_fqn"], None) if params is not None: per_layer_params = {k: config[k] for k in params} sparse_params.update(per_layer_params) if sparse_params: # TODO handle multiple tensor being quantized on a single module, where to store sparse_params? module.sparse_params = sparse_params def convert(self): # TODO: Call the torch.ao.utils.convert in here raise NotImplementedError( "`convert` is not implemented. Please, use " "`torch.ao.utils.convert` instead." ) def step(self, use_path: bool = True) -> None: if not self.enable_mask_update: return with torch.no_grad(): for config in self.groups: self.update_mask(**config) @abc.abstractmethod def update_mask(self, module: nn.Module, tensor_name: str, **kwargs): pass