from sympy.combinatorics.named_groups import (SymmetricGroup, CyclicGroup, DihedralGroup, AlternatingGroup, AbelianGroup, RubikGroup) from sympy.testing.pytest import raises def test_SymmetricGroup(): G = SymmetricGroup(5) elements = list(G.generate()) assert (G.generators[0]).size == 5 assert len(elements) == 120 assert G.is_solvable is False assert G.is_abelian is False assert G.is_nilpotent is False assert G.is_transitive() is True H = SymmetricGroup(1) assert H.order() == 1 L = SymmetricGroup(2) assert L.order() == 2 def test_CyclicGroup(): G = CyclicGroup(10) elements = list(G.generate()) assert len(elements) == 10 assert (G.derived_subgroup()).order() == 1 assert G.is_abelian is True assert G.is_solvable is True assert G.is_nilpotent is True H = CyclicGroup(1) assert H.order() == 1 L = CyclicGroup(2) assert L.order() == 2 def test_DihedralGroup(): G = DihedralGroup(6) elements = list(G.generate()) assert len(elements) == 12 assert G.is_transitive() is True assert G.is_abelian is False assert G.is_solvable is True assert G.is_nilpotent is False H = DihedralGroup(1) assert H.order() == 2 L = DihedralGroup(2) assert L.order() == 4 assert L.is_abelian is True assert L.is_nilpotent is True def test_AlternatingGroup(): G = AlternatingGroup(5) elements = list(G.generate()) assert len(elements) == 60 assert [perm.is_even for perm in elements] == [True]*60 H = AlternatingGroup(1) assert H.order() == 1 L = AlternatingGroup(2) assert L.order() == 1 def test_AbelianGroup(): A = AbelianGroup(3, 3, 3) assert A.order() == 27 assert A.is_abelian is True def test_RubikGroup(): raises(ValueError, lambda: RubikGroup(1))